Nearest Ω-stable matrix via Riemannian optimization

We study the problem of finding the nearest Ω -stable matrix to a certain matrix A , i.e., the nearest matrix with all its eigenvalues in a prescribed closed set Ω . Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2021-08, Vol.148 (4), p.817-851
Hauptverfasser: Noferini, Vanni, Poloni, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue 4
container_start_page 817
container_title Numerische Mathematik
container_volume 148
creator Noferini, Vanni
Poloni, Federico
description We study the problem of finding the nearest Ω -stable matrix to a certain matrix A , i.e., the nearest matrix with all its eigenvalues in a prescribed closed set Ω . Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which has applications in systems theory. We describe a reformulation of the task as an optimization problem on the Riemannian manifold of orthogonal (or unitary) matrices. The problem can then be solved using standard methods from the theory of Riemannian optimization. The resulting algorithm is remarkably fast on small-scale and medium-scale matrices, and returns directly a Schur factorization of the minimizer, sidestepping the numerical difficulties associated with eigenvalues with high multiplicity.
doi_str_mv 10.1007/s00211-021-01217-4
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2563187587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563187587</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-44b32e763fd9b8b59ee880408424b423a1d5ba839f11a468950655f2083c5cfc3</originalsourceid><addsrcrecordid>eNpFkM9KxDAQh4MouK6-gKeC5-hMMmmSoyzqCouCKHgLaTeVLNs_Nl0R38iX8ZmsVvDymzl8_Gb4GDtFOEcAfZEABCIfgwMK1Jz22AwsKS4Fqf1xB2G5svb5kB2ltAFAnRPOGN0F34c0ZF-fPA2-2Ias9kMf37O36LOHGGrfNNE3WdsNsY4ffohtc8wOKr9N4eRvztnT9dXjYslX9ze3i8sV74TQAycqpAg6l9XaFqZQNgRjgMCQoIKE9LhWhTfSVoiecmMV5EpVAowsVVmVcs7Opt6ub19345du0-76ZjzphMolGq2MHik5UanrY_MS-n8Kwf3ocZMeN4b71eNIfgOrLFdJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563187587</pqid></control><display><type>article</type><title>Nearest Ω-stable matrix via Riemannian optimization</title><source>SpringerNature Journals</source><creator>Noferini, Vanni ; Poloni, Federico</creator><creatorcontrib>Noferini, Vanni ; Poloni, Federico</creatorcontrib><description>We study the problem of finding the nearest Ω -stable matrix to a certain matrix A , i.e., the nearest matrix with all its eigenvalues in a prescribed closed set Ω . Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which has applications in systems theory. We describe a reformulation of the task as an optimization problem on the Riemannian manifold of orthogonal (or unitary) matrices. The problem can then be solved using standard methods from the theory of Riemannian optimization. The resulting algorithm is remarkably fast on small-scale and medium-scale matrices, and returns directly a Schur factorization of the minimizer, sidestepping the numerical difficulties associated with eigenvalues with high multiplicity.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01217-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Eigenvalues ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Optimization ; Riemann manifold ; Simulation ; System theory ; Systems theory ; Theoretical</subject><ispartof>Numerische Mathematik, 2021-08, Vol.148 (4), p.817-851</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-021-01217-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-021-01217-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Noferini, Vanni</creatorcontrib><creatorcontrib>Poloni, Federico</creatorcontrib><title>Nearest Ω-stable matrix via Riemannian optimization</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We study the problem of finding the nearest Ω -stable matrix to a certain matrix A , i.e., the nearest matrix with all its eigenvalues in a prescribed closed set Ω . Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which has applications in systems theory. We describe a reformulation of the task as an optimization problem on the Riemannian manifold of orthogonal (or unitary) matrices. The problem can then be solved using standard methods from the theory of Riemannian optimization. The resulting algorithm is remarkably fast on small-scale and medium-scale matrices, and returns directly a Schur factorization of the minimizer, sidestepping the numerical difficulties associated with eigenvalues with high multiplicity.</description><subject>Algorithms</subject><subject>Eigenvalues</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Optimization</subject><subject>Riemann manifold</subject><subject>Simulation</subject><subject>System theory</subject><subject>Systems theory</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkM9KxDAQh4MouK6-gKeC5-hMMmmSoyzqCouCKHgLaTeVLNs_Nl0R38iX8ZmsVvDymzl8_Gb4GDtFOEcAfZEABCIfgwMK1Jz22AwsKS4Fqf1xB2G5svb5kB2ltAFAnRPOGN0F34c0ZF-fPA2-2Ias9kMf37O36LOHGGrfNNE3WdsNsY4ffohtc8wOKr9N4eRvztnT9dXjYslX9ze3i8sV74TQAycqpAg6l9XaFqZQNgRjgMCQoIKE9LhWhTfSVoiecmMV5EpVAowsVVmVcs7Opt6ub19345du0-76ZjzphMolGq2MHik5UanrY_MS-n8Kwf3ocZMeN4b71eNIfgOrLFdJ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Noferini, Vanni</creator><creator>Poloni, Federico</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope></search><sort><creationdate>20210801</creationdate><title>Nearest Ω-stable matrix via Riemannian optimization</title><author>Noferini, Vanni ; Poloni, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-44b32e763fd9b8b59ee880408424b423a1d5ba839f11a468950655f2083c5cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Eigenvalues</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Optimization</topic><topic>Riemann manifold</topic><topic>Simulation</topic><topic>System theory</topic><topic>Systems theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noferini, Vanni</creatorcontrib><creatorcontrib>Poloni, Federico</creatorcontrib><collection>Springer Nature OA Free Journals</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noferini, Vanni</au><au>Poloni, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nearest Ω-stable matrix via Riemannian optimization</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>148</volume><issue>4</issue><spage>817</spage><epage>851</epage><pages>817-851</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We study the problem of finding the nearest Ω -stable matrix to a certain matrix A , i.e., the nearest matrix with all its eigenvalues in a prescribed closed set Ω . Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which has applications in systems theory. We describe a reformulation of the task as an optimization problem on the Riemannian manifold of orthogonal (or unitary) matrices. The problem can then be solved using standard methods from the theory of Riemannian optimization. The resulting algorithm is remarkably fast on small-scale and medium-scale matrices, and returns directly a Schur factorization of the minimizer, sidestepping the numerical difficulties associated with eigenvalues with high multiplicity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01217-4</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2021-08, Vol.148 (4), p.817-851
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2563187587
source SpringerNature Journals
subjects Algorithms
Eigenvalues
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Optimization
Riemann manifold
Simulation
System theory
Systems theory
Theoretical
title Nearest Ω-stable matrix via Riemannian optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nearest%20%CE%A9-stable%20matrix%20via%20Riemannian%20optimization&rft.jtitle=Numerische%20Mathematik&rft.au=Noferini,%20Vanni&rft.date=2021-08-01&rft.volume=148&rft.issue=4&rft.spage=817&rft.epage=851&rft.pages=817-851&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01217-4&rft_dat=%3Cproquest_sprin%3E2563187587%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563187587&rft_id=info:pmid/&rfr_iscdi=true