News sentiment and stock market volatility

This study investigates the effect of news sentiment on stock market volatility using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and measures the asymmetric effect with the GJR-GARCH model. We adopt patented linguistic analysis that considers the semantic orientation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of quantitative finance and accounting 2021-10, Vol.57 (3), p.1093-1122
Hauptverfasser: Hsu, Yen-Ju, Lu, Yang-Cheng, Yang, J. Jimmy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1122
container_issue 3
container_start_page 1093
container_title Review of quantitative finance and accounting
container_volume 57
creator Hsu, Yen-Ju
Lu, Yang-Cheng
Yang, J. Jimmy
description This study investigates the effect of news sentiment on stock market volatility using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and measures the asymmetric effect with the GJR-GARCH model. We adopt patented linguistic analysis that considers the semantic orientation process to quantify financial news that may attract investor attention. This study distinguishes between unclassified market news sentiment and macroeconomic-related news effects. The evidence suggests that both contemporaneous and lagged news are determinants of market volatility. The effect is especially strong with the market aggregate news sentiment index ( ANSI ) and the negative ANSI , particularly during the 2008–2009 financial crisis period. This analysis of news sentiment improves the accuracy of in-sample and out-of-sample volatility forecasting.
doi_str_mv 10.1007/s11156-021-00971-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563063045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563063045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-48bed7a3a33bf27062732155c11b9eb3ec6a385fc456f5cf453395d11c69e8dd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fb0J0JmmS5iiLX7DoRcFbSNNUuh_tmmSV_fdGK-xNGGYO8z7zDi8h5whXCKCuIyIKSYEhBdAKaXVAJigUpwqVPiQT0KyklRRvx-QkxgVAxoSYkMsn_xWL6PvUrXMrbN8UMQ1uWaxtWPpUfA4rm7pVl3an5Ki1q-jP_uaUvN7dvswe6Pz5_nF2M6euBJ1oWdW-UZZbzuuWKZBMcYZCOMRa-5p7Jy2vROtKIVvh2lJwrkWD6KT2VdPwKbkY727C8LH1MZnFsA19tjRMSA65MjMlbFS5MMQYfGs2ocs_7wyC-cnEjJmYnIn5zcRUGSpGyLuh7-IeUQp0fkpjlvBREvOyf_dh7_7P4W_Clm1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563063045</pqid></control><display><type>article</type><title>News sentiment and stock market volatility</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Hsu, Yen-Ju ; Lu, Yang-Cheng ; Yang, J. Jimmy</creator><creatorcontrib>Hsu, Yen-Ju ; Lu, Yang-Cheng ; Yang, J. Jimmy</creatorcontrib><description>This study investigates the effect of news sentiment on stock market volatility using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and measures the asymmetric effect with the GJR-GARCH model. We adopt patented linguistic analysis that considers the semantic orientation process to quantify financial news that may attract investor attention. This study distinguishes between unclassified market news sentiment and macroeconomic-related news effects. The evidence suggests that both contemporaneous and lagged news are determinants of market volatility. The effect is especially strong with the market aggregate news sentiment index ( ANSI ) and the negative ANSI , particularly during the 2008–2009 financial crisis period. This analysis of news sentiment improves the accuracy of in-sample and out-of-sample volatility forecasting.</description><identifier>ISSN: 0924-865X</identifier><identifier>EISSN: 1573-7179</identifier><identifier>DOI: 10.1007/s11156-021-00971-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accounting/Auditing ; Corporate Finance ; Econometrics ; Economic crisis ; Economics and Finance ; Finance ; News ; Operations Research/Decision Theory ; Original Research ; Securities markets ; Stochastic models ; Volatility</subject><ispartof>Review of quantitative finance and accounting, 2021-10, Vol.57 (3), p.1093-1122</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-48bed7a3a33bf27062732155c11b9eb3ec6a385fc456f5cf453395d11c69e8dd3</citedby><cites>FETCH-LOGICAL-c409t-48bed7a3a33bf27062732155c11b9eb3ec6a385fc456f5cf453395d11c69e8dd3</cites><orcidid>0000-0003-4840-6926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11156-021-00971-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11156-021-00971-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hsu, Yen-Ju</creatorcontrib><creatorcontrib>Lu, Yang-Cheng</creatorcontrib><creatorcontrib>Yang, J. Jimmy</creatorcontrib><title>News sentiment and stock market volatility</title><title>Review of quantitative finance and accounting</title><addtitle>Rev Quant Finan Acc</addtitle><description>This study investigates the effect of news sentiment on stock market volatility using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and measures the asymmetric effect with the GJR-GARCH model. We adopt patented linguistic analysis that considers the semantic orientation process to quantify financial news that may attract investor attention. This study distinguishes between unclassified market news sentiment and macroeconomic-related news effects. The evidence suggests that both contemporaneous and lagged news are determinants of market volatility. The effect is especially strong with the market aggregate news sentiment index ( ANSI ) and the negative ANSI , particularly during the 2008–2009 financial crisis period. This analysis of news sentiment improves the accuracy of in-sample and out-of-sample volatility forecasting.</description><subject>Accounting/Auditing</subject><subject>Corporate Finance</subject><subject>Econometrics</subject><subject>Economic crisis</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>News</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Securities markets</subject><subject>Stochastic models</subject><subject>Volatility</subject><issn>0924-865X</issn><issn>1573-7179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fb0J0JmmS5iiLX7DoRcFbSNNUuh_tmmSV_fdGK-xNGGYO8z7zDi8h5whXCKCuIyIKSYEhBdAKaXVAJigUpwqVPiQT0KyklRRvx-QkxgVAxoSYkMsn_xWL6PvUrXMrbN8UMQ1uWaxtWPpUfA4rm7pVl3an5Ki1q-jP_uaUvN7dvswe6Pz5_nF2M6euBJ1oWdW-UZZbzuuWKZBMcYZCOMRa-5p7Jy2vROtKIVvh2lJwrkWD6KT2VdPwKbkY727C8LH1MZnFsA19tjRMSA65MjMlbFS5MMQYfGs2ocs_7wyC-cnEjJmYnIn5zcRUGSpGyLuh7-IeUQp0fkpjlvBREvOyf_dh7_7P4W_Clm1w</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hsu, Yen-Ju</creator><creator>Lu, Yang-Cheng</creator><creator>Yang, J. Jimmy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8A9</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4840-6926</orcidid></search><sort><creationdate>20211001</creationdate><title>News sentiment and stock market volatility</title><author>Hsu, Yen-Ju ; Lu, Yang-Cheng ; Yang, J. Jimmy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-48bed7a3a33bf27062732155c11b9eb3ec6a385fc456f5cf453395d11c69e8dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accounting/Auditing</topic><topic>Corporate Finance</topic><topic>Econometrics</topic><topic>Economic crisis</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>News</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Securities markets</topic><topic>Stochastic models</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Yen-Ju</creatorcontrib><creatorcontrib>Lu, Yang-Cheng</creatorcontrib><creatorcontrib>Yang, J. Jimmy</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>Accounting &amp; Tax Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Review of quantitative finance and accounting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Yen-Ju</au><au>Lu, Yang-Cheng</au><au>Yang, J. Jimmy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>News sentiment and stock market volatility</atitle><jtitle>Review of quantitative finance and accounting</jtitle><stitle>Rev Quant Finan Acc</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>1093</spage><epage>1122</epage><pages>1093-1122</pages><issn>0924-865X</issn><eissn>1573-7179</eissn><abstract>This study investigates the effect of news sentiment on stock market volatility using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and measures the asymmetric effect with the GJR-GARCH model. We adopt patented linguistic analysis that considers the semantic orientation process to quantify financial news that may attract investor attention. This study distinguishes between unclassified market news sentiment and macroeconomic-related news effects. The evidence suggests that both contemporaneous and lagged news are determinants of market volatility. The effect is especially strong with the market aggregate news sentiment index ( ANSI ) and the negative ANSI , particularly during the 2008–2009 financial crisis period. This analysis of news sentiment improves the accuracy of in-sample and out-of-sample volatility forecasting.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11156-021-00971-8</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-4840-6926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-865X
ispartof Review of quantitative finance and accounting, 2021-10, Vol.57 (3), p.1093-1122
issn 0924-865X
1573-7179
language eng
recordid cdi_proquest_journals_2563063045
source Springer Nature - Complete Springer Journals; Business Source Complete
subjects Accounting/Auditing
Corporate Finance
Econometrics
Economic crisis
Economics and Finance
Finance
News
Operations Research/Decision Theory
Original Research
Securities markets
Stochastic models
Volatility
title News sentiment and stock market volatility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=News%20sentiment%20and%20stock%20market%20volatility&rft.jtitle=Review%20of%20quantitative%20finance%20and%20accounting&rft.au=Hsu,%20Yen-Ju&rft.date=2021-10-01&rft.volume=57&rft.issue=3&rft.spage=1093&rft.epage=1122&rft.pages=1093-1122&rft.issn=0924-865X&rft.eissn=1573-7179&rft_id=info:doi/10.1007/s11156-021-00971-8&rft_dat=%3Cproquest_cross%3E2563063045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563063045&rft_id=info:pmid/&rfr_iscdi=true