Line Failure Localization of Power Networks Part I: Non-Cut Outages
Transmission line failures in power systems propagate non-locally, making the control of the resulting outages extremely difficult. In this work, we establish a mathematical theory that characterizes the patterns of line failure propagation and localization in terms of network graph structure. It pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2021-09, Vol.36 (5), p.4140-4151 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4151 |
---|---|
container_issue | 5 |
container_start_page | 4140 |
container_title | IEEE transactions on power systems |
container_volume | 36 |
creator | Guo, Linqi Liang, Chen Zocca, Alessandro Low, Steven H. Wierman, Adam |
description | Transmission line failures in power systems propagate non-locally, making the control of the resulting outages extremely difficult. In this work, we establish a mathematical theory that characterizes the patterns of line failure propagation and localization in terms of network graph structure. It provides a novel perspective on distribution factors that precisely captures Kirchhoff's Law in terms of topological structures. Our results show that the distribution of specific collections of subtrees of the transmission network plays a critical role on the patterns of power redistribution, and motivates the block decomposition of the transmission network as a structure to understand long-distance propagation of disturbances. In Part I of this paper, we present the case when the post-contingency network remains connected after an initial set of lines are disconnected simultaneously. In Part II, we present the case when an outage separates the network into multiple islands. |
doi_str_mv | 10.1109/TPWRS.2021.3066336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562954603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9380543</ieee_id><sourcerecordid>2562954603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-ea1484a4f7adbe5580b3207d2c47b9479029d1568b2746fc319efa5cfc9dc1f63</originalsourceid><addsrcrecordid>eNo9kF1LwzAUQIMoOKd_QF8CPnfmu41vUpwOyjZ04mNI00Q6Z6NJytBfb-eGT_flnHsvB4BLjCYYI3mzWr4-PU8IInhCkRCUiiMwwpwXGRK5PAYjVBQ8KyRHp-AsxjVCA5XLESirtrNwqttNHyysvNGb9ken1nfQO7j0Wxvg3KatD-8RLnVIcHYL577Lyj7BRZ_0m43n4MTpTbQXhzkGL9P7VfmYVYuHWXlXZYZSmTKrMSuYZi7XTW2H31BNCcobYlheS5ZLRGSDuShqkjPhDMXSOs2NM7Ix2Ak6Btf7vZ_Bf_U2JrX2feiGk4pwQSRnAtGBInvKBB9jsE59hvZDh2-FkdrFUn-x1C6WOsQapKu91Fpr_wVJC8QZpb8eJmS_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562954603</pqid></control><display><type>article</type><title>Line Failure Localization of Power Networks Part I: Non-Cut Outages</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Linqi ; Liang, Chen ; Zocca, Alessandro ; Low, Steven H. ; Wierman, Adam</creator><creatorcontrib>Guo, Linqi ; Liang, Chen ; Zocca, Alessandro ; Low, Steven H. ; Wierman, Adam</creatorcontrib><description>Transmission line failures in power systems propagate non-locally, making the control of the resulting outages extremely difficult. In this work, we establish a mathematical theory that characterizes the patterns of line failure propagation and localization in terms of network graph structure. It provides a novel perspective on distribution factors that precisely captures Kirchhoff's Law in terms of topological structures. Our results show that the distribution of specific collections of subtrees of the transmission network plays a critical role on the patterns of power redistribution, and motivates the block decomposition of the transmission network as a structure to understand long-distance propagation of disturbances. In Part I of this paper, we present the case when the post-contingency network remains connected after an initial set of lines are disconnected simultaneously. In Part II, we present the case when an outage separates the network into multiple islands.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2021.3066336</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cascading failure ; Contingency ; contingency analysis ; Contingency management ; Extreme values ; Laplace equations ; laplacian matrix ; Localization ; Matrix decomposition ; Outages ; Power system faults ; Power system protection ; Power transmission lines ; Propagation ; spanning forests ; Transmission line matrix methods ; Transmission lines</subject><ispartof>IEEE transactions on power systems, 2021-09, Vol.36 (5), p.4140-4151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-ea1484a4f7adbe5580b3207d2c47b9479029d1568b2746fc319efa5cfc9dc1f63</citedby><cites>FETCH-LOGICAL-c339t-ea1484a4f7adbe5580b3207d2c47b9479029d1568b2746fc319efa5cfc9dc1f63</cites><orcidid>0000-0001-6476-3048 ; 0000-0001-6585-4785 ; 0000-0001-5771-2752 ; 0000-0002-0015-7206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9380543$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Guo, Linqi</creatorcontrib><creatorcontrib>Liang, Chen</creatorcontrib><creatorcontrib>Zocca, Alessandro</creatorcontrib><creatorcontrib>Low, Steven H.</creatorcontrib><creatorcontrib>Wierman, Adam</creatorcontrib><title>Line Failure Localization of Power Networks Part I: Non-Cut Outages</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Transmission line failures in power systems propagate non-locally, making the control of the resulting outages extremely difficult. In this work, we establish a mathematical theory that characterizes the patterns of line failure propagation and localization in terms of network graph structure. It provides a novel perspective on distribution factors that precisely captures Kirchhoff's Law in terms of topological structures. Our results show that the distribution of specific collections of subtrees of the transmission network plays a critical role on the patterns of power redistribution, and motivates the block decomposition of the transmission network as a structure to understand long-distance propagation of disturbances. In Part I of this paper, we present the case when the post-contingency network remains connected after an initial set of lines are disconnected simultaneously. In Part II, we present the case when an outage separates the network into multiple islands.</description><subject>Cascading failure</subject><subject>Contingency</subject><subject>contingency analysis</subject><subject>Contingency management</subject><subject>Extreme values</subject><subject>Laplace equations</subject><subject>laplacian matrix</subject><subject>Localization</subject><subject>Matrix decomposition</subject><subject>Outages</subject><subject>Power system faults</subject><subject>Power system protection</subject><subject>Power transmission lines</subject><subject>Propagation</subject><subject>spanning forests</subject><subject>Transmission line matrix methods</subject><subject>Transmission lines</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUQIMoOKd_QF8CPnfmu41vUpwOyjZ04mNI00Q6Z6NJytBfb-eGT_flnHsvB4BLjCYYI3mzWr4-PU8IInhCkRCUiiMwwpwXGRK5PAYjVBQ8KyRHp-AsxjVCA5XLESirtrNwqttNHyysvNGb9ken1nfQO7j0Wxvg3KatD-8RLnVIcHYL577Lyj7BRZ_0m43n4MTpTbQXhzkGL9P7VfmYVYuHWXlXZYZSmTKrMSuYZi7XTW2H31BNCcobYlheS5ZLRGSDuShqkjPhDMXSOs2NM7Ix2Ak6Btf7vZ_Bf_U2JrX2feiGk4pwQSRnAtGBInvKBB9jsE59hvZDh2-FkdrFUn-x1C6WOsQapKu91Fpr_wVJC8QZpb8eJmS_</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Guo, Linqi</creator><creator>Liang, Chen</creator><creator>Zocca, Alessandro</creator><creator>Low, Steven H.</creator><creator>Wierman, Adam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6476-3048</orcidid><orcidid>https://orcid.org/0000-0001-6585-4785</orcidid><orcidid>https://orcid.org/0000-0001-5771-2752</orcidid><orcidid>https://orcid.org/0000-0002-0015-7206</orcidid></search><sort><creationdate>202109</creationdate><title>Line Failure Localization of Power Networks Part I: Non-Cut Outages</title><author>Guo, Linqi ; Liang, Chen ; Zocca, Alessandro ; Low, Steven H. ; Wierman, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-ea1484a4f7adbe5580b3207d2c47b9479029d1568b2746fc319efa5cfc9dc1f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cascading failure</topic><topic>Contingency</topic><topic>contingency analysis</topic><topic>Contingency management</topic><topic>Extreme values</topic><topic>Laplace equations</topic><topic>laplacian matrix</topic><topic>Localization</topic><topic>Matrix decomposition</topic><topic>Outages</topic><topic>Power system faults</topic><topic>Power system protection</topic><topic>Power transmission lines</topic><topic>Propagation</topic><topic>spanning forests</topic><topic>Transmission line matrix methods</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Linqi</creatorcontrib><creatorcontrib>Liang, Chen</creatorcontrib><creatorcontrib>Zocca, Alessandro</creatorcontrib><creatorcontrib>Low, Steven H.</creatorcontrib><creatorcontrib>Wierman, Adam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Linqi</au><au>Liang, Chen</au><au>Zocca, Alessandro</au><au>Low, Steven H.</au><au>Wierman, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Line Failure Localization of Power Networks Part I: Non-Cut Outages</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-09</date><risdate>2021</risdate><volume>36</volume><issue>5</issue><spage>4140</spage><epage>4151</epage><pages>4140-4151</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Transmission line failures in power systems propagate non-locally, making the control of the resulting outages extremely difficult. In this work, we establish a mathematical theory that characterizes the patterns of line failure propagation and localization in terms of network graph structure. It provides a novel perspective on distribution factors that precisely captures Kirchhoff's Law in terms of topological structures. Our results show that the distribution of specific collections of subtrees of the transmission network plays a critical role on the patterns of power redistribution, and motivates the block decomposition of the transmission network as a structure to understand long-distance propagation of disturbances. In Part I of this paper, we present the case when the post-contingency network remains connected after an initial set of lines are disconnected simultaneously. In Part II, we present the case when an outage separates the network into multiple islands.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2021.3066336</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6476-3048</orcidid><orcidid>https://orcid.org/0000-0001-6585-4785</orcidid><orcidid>https://orcid.org/0000-0001-5771-2752</orcidid><orcidid>https://orcid.org/0000-0002-0015-7206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2021-09, Vol.36 (5), p.4140-4151 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_2562954603 |
source | IEEE Electronic Library (IEL) |
subjects | Cascading failure Contingency contingency analysis Contingency management Extreme values Laplace equations laplacian matrix Localization Matrix decomposition Outages Power system faults Power system protection Power transmission lines Propagation spanning forests Transmission line matrix methods Transmission lines |
title | Line Failure Localization of Power Networks Part I: Non-Cut Outages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Line%20Failure%20Localization%20of%20Power%20Networks%20Part%20I:%20Non-Cut%20Outages&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Guo,%20Linqi&rft.date=2021-09&rft.volume=36&rft.issue=5&rft.spage=4140&rft.epage=4151&rft.pages=4140-4151&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2021.3066336&rft_dat=%3Cproquest_cross%3E2562954603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562954603&rft_id=info:pmid/&rft_ieee_id=9380543&rfr_iscdi=true |