Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices
Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-08, Vol.31 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Borsoi, Francesco Mazur, Grzegorz P. van Loo, Nick Nowak, Michał P. Bourdet, Léo Li, Kongyi Korneychuk, Svetlana Fursina, Alexandra Wang, Ji‐Yin Levajac, Vukan Memisevic, Elvedin Badawy, Ghada Gazibegovic, Sasa van Hoogdalem, Kevin Bakkers, Erik P. A. M. Kouwenhoven, Leo P. Heedt, Sebastian Quintero‐Pérez, Marina |
description | Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal‐superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect‐free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano‐devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality.
Semiconducting–superconducting hybrids are vital components for the realization of nanoscale devices such as topological qubits. Here, a fabrication concept is introduced, enabling the in situ, selective, and consecutive depositions of superconducting and metallic layers on semiconducting nanowires forming hybrid junctions in a single shot. By eliminating conventional nanofabrication steps, all devices reveal sharp interfaces and hard gap induced superconductivity. |
doi_str_mv | 10.1002/adfm.202102388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562851466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562851466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-1d37850c0c61213c8f03b814086211b98b9de1aab53983a18c483a55a78fe8403</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKdXzwXPnXlJ06bHsTkV5jxUwVtI01QztmYmrWO3fQTBb7hPYkdlO3r6Px6__3vwQ-ga8AAwJreyKJcDgglgQjk_QT2IIQ4pJvz0MMPbObrwfo4xJAmNemiWmep9oXfb7-zD1sFE5s4oWRtbBbYMMr00ylZFo-oW221_smal3XETzGRl18bpYKy_jNL-Ep2VcuH11V_20evk7mX0EE6f7x9Hw2moKEt4CAVNOMMKqxgIUMVLTHMOEeYxAchTnqeFBilzRlNOJXAVtcGYTHipeYRpH910d1fOfjba12JuG1e1LwVhMeEMojhuqUFHKWe9d7oUK2eW0m0EYLF3JvbOxMFZW0i7wtos9OYfWgzHk6dj9xeqBXGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562851466</pqid></control><display><type>article</type><title>Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Borsoi, Francesco ; Mazur, Grzegorz P. ; van Loo, Nick ; Nowak, Michał P. ; Bourdet, Léo ; Li, Kongyi ; Korneychuk, Svetlana ; Fursina, Alexandra ; Wang, Ji‐Yin ; Levajac, Vukan ; Memisevic, Elvedin ; Badawy, Ghada ; Gazibegovic, Sasa ; van Hoogdalem, Kevin ; Bakkers, Erik P. A. M. ; Kouwenhoven, Leo P. ; Heedt, Sebastian ; Quintero‐Pérez, Marina</creator><creatorcontrib>Borsoi, Francesco ; Mazur, Grzegorz P. ; van Loo, Nick ; Nowak, Michał P. ; Bourdet, Léo ; Li, Kongyi ; Korneychuk, Svetlana ; Fursina, Alexandra ; Wang, Ji‐Yin ; Levajac, Vukan ; Memisevic, Elvedin ; Badawy, Ghada ; Gazibegovic, Sasa ; van Hoogdalem, Kevin ; Bakkers, Erik P. A. M. ; Kouwenhoven, Leo P. ; Heedt, Sebastian ; Quintero‐Pérez, Marina</creatorcontrib><description>Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal‐superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect‐free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano‐devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality.
Semiconducting–superconducting hybrids are vital components for the realization of nanoscale devices such as topological qubits. Here, a fabrication concept is introduced, enabling the in situ, selective, and consecutive depositions of superconducting and metallic layers on semiconducting nanowires forming hybrid junctions in a single shot. By eliminating conventional nanofabrication steps, all devices reveal sharp interfaces and hard gap induced superconductivity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202102388</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Devices ; Electrical junctions ; Elementary excitations ; hybrid devices ; interfaces ; Josephson junctions ; Materials science ; Nanotechnology devices ; Nanowires ; Quantum computing ; semiconducting nanowires ; Superconductivity ; Superconductors ; Synthesis ; Topology</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (34), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-1d37850c0c61213c8f03b814086211b98b9de1aab53983a18c483a55a78fe8403</citedby><cites>FETCH-LOGICAL-c3578-1d37850c0c61213c8f03b814086211b98b9de1aab53983a18c483a55a78fe8403</cites><orcidid>0000-0002-2740-9688 ; 0000-0001-9398-7614 ; 0000-0003-0050-6688 ; 0000-0002-8264-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202102388$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202102388$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Borsoi, Francesco</creatorcontrib><creatorcontrib>Mazur, Grzegorz P.</creatorcontrib><creatorcontrib>van Loo, Nick</creatorcontrib><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Bourdet, Léo</creatorcontrib><creatorcontrib>Li, Kongyi</creatorcontrib><creatorcontrib>Korneychuk, Svetlana</creatorcontrib><creatorcontrib>Fursina, Alexandra</creatorcontrib><creatorcontrib>Wang, Ji‐Yin</creatorcontrib><creatorcontrib>Levajac, Vukan</creatorcontrib><creatorcontrib>Memisevic, Elvedin</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Gazibegovic, Sasa</creatorcontrib><creatorcontrib>van Hoogdalem, Kevin</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Heedt, Sebastian</creatorcontrib><creatorcontrib>Quintero‐Pérez, Marina</creatorcontrib><title>Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices</title><title>Advanced functional materials</title><description>Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal‐superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect‐free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano‐devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality.
Semiconducting–superconducting hybrids are vital components for the realization of nanoscale devices such as topological qubits. Here, a fabrication concept is introduced, enabling the in situ, selective, and consecutive depositions of superconducting and metallic layers on semiconducting nanowires forming hybrid junctions in a single shot. By eliminating conventional nanofabrication steps, all devices reveal sharp interfaces and hard gap induced superconductivity.</description><subject>Devices</subject><subject>Electrical junctions</subject><subject>Elementary excitations</subject><subject>hybrid devices</subject><subject>interfaces</subject><subject>Josephson junctions</subject><subject>Materials science</subject><subject>Nanotechnology devices</subject><subject>Nanowires</subject><subject>Quantum computing</subject><subject>semiconducting nanowires</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Synthesis</subject><subject>Topology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEFLwzAUx4MoOKdXzwXPnXlJ06bHsTkV5jxUwVtI01QztmYmrWO3fQTBb7hPYkdlO3r6Px6__3vwQ-ga8AAwJreyKJcDgglgQjk_QT2IIQ4pJvz0MMPbObrwfo4xJAmNemiWmep9oXfb7-zD1sFE5s4oWRtbBbYMMr00ylZFo-oW221_smal3XETzGRl18bpYKy_jNL-Ep2VcuH11V_20evk7mX0EE6f7x9Hw2moKEt4CAVNOMMKqxgIUMVLTHMOEeYxAchTnqeFBilzRlNOJXAVtcGYTHipeYRpH910d1fOfjba12JuG1e1LwVhMeEMojhuqUFHKWe9d7oUK2eW0m0EYLF3JvbOxMFZW0i7wtos9OYfWgzHk6dj9xeqBXGo</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Borsoi, Francesco</creator><creator>Mazur, Grzegorz P.</creator><creator>van Loo, Nick</creator><creator>Nowak, Michał P.</creator><creator>Bourdet, Léo</creator><creator>Li, Kongyi</creator><creator>Korneychuk, Svetlana</creator><creator>Fursina, Alexandra</creator><creator>Wang, Ji‐Yin</creator><creator>Levajac, Vukan</creator><creator>Memisevic, Elvedin</creator><creator>Badawy, Ghada</creator><creator>Gazibegovic, Sasa</creator><creator>van Hoogdalem, Kevin</creator><creator>Bakkers, Erik P. A. M.</creator><creator>Kouwenhoven, Leo P.</creator><creator>Heedt, Sebastian</creator><creator>Quintero‐Pérez, Marina</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2740-9688</orcidid><orcidid>https://orcid.org/0000-0001-9398-7614</orcidid><orcidid>https://orcid.org/0000-0003-0050-6688</orcidid><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid></search><sort><creationdate>20210801</creationdate><title>Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices</title><author>Borsoi, Francesco ; Mazur, Grzegorz P. ; van Loo, Nick ; Nowak, Michał P. ; Bourdet, Léo ; Li, Kongyi ; Korneychuk, Svetlana ; Fursina, Alexandra ; Wang, Ji‐Yin ; Levajac, Vukan ; Memisevic, Elvedin ; Badawy, Ghada ; Gazibegovic, Sasa ; van Hoogdalem, Kevin ; Bakkers, Erik P. A. M. ; Kouwenhoven, Leo P. ; Heedt, Sebastian ; Quintero‐Pérez, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-1d37850c0c61213c8f03b814086211b98b9de1aab53983a18c483a55a78fe8403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Devices</topic><topic>Electrical junctions</topic><topic>Elementary excitations</topic><topic>hybrid devices</topic><topic>interfaces</topic><topic>Josephson junctions</topic><topic>Materials science</topic><topic>Nanotechnology devices</topic><topic>Nanowires</topic><topic>Quantum computing</topic><topic>semiconducting nanowires</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Synthesis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borsoi, Francesco</creatorcontrib><creatorcontrib>Mazur, Grzegorz P.</creatorcontrib><creatorcontrib>van Loo, Nick</creatorcontrib><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Bourdet, Léo</creatorcontrib><creatorcontrib>Li, Kongyi</creatorcontrib><creatorcontrib>Korneychuk, Svetlana</creatorcontrib><creatorcontrib>Fursina, Alexandra</creatorcontrib><creatorcontrib>Wang, Ji‐Yin</creatorcontrib><creatorcontrib>Levajac, Vukan</creatorcontrib><creatorcontrib>Memisevic, Elvedin</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Gazibegovic, Sasa</creatorcontrib><creatorcontrib>van Hoogdalem, Kevin</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Heedt, Sebastian</creatorcontrib><creatorcontrib>Quintero‐Pérez, Marina</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borsoi, Francesco</au><au>Mazur, Grzegorz P.</au><au>van Loo, Nick</au><au>Nowak, Michał P.</au><au>Bourdet, Léo</au><au>Li, Kongyi</au><au>Korneychuk, Svetlana</au><au>Fursina, Alexandra</au><au>Wang, Ji‐Yin</au><au>Levajac, Vukan</au><au>Memisevic, Elvedin</au><au>Badawy, Ghada</au><au>Gazibegovic, Sasa</au><au>van Hoogdalem, Kevin</au><au>Bakkers, Erik P. A. M.</au><au>Kouwenhoven, Leo P.</au><au>Heedt, Sebastian</au><au>Quintero‐Pérez, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal‐superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect‐free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano‐devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality.
Semiconducting–superconducting hybrids are vital components for the realization of nanoscale devices such as topological qubits. Here, a fabrication concept is introduced, enabling the in situ, selective, and consecutive depositions of superconducting and metallic layers on semiconducting nanowires forming hybrid junctions in a single shot. By eliminating conventional nanofabrication steps, all devices reveal sharp interfaces and hard gap induced superconductivity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202102388</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2740-9688</orcidid><orcidid>https://orcid.org/0000-0001-9398-7614</orcidid><orcidid>https://orcid.org/0000-0003-0050-6688</orcidid><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-08, Vol.31 (34), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2562851466 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Devices Electrical junctions Elementary excitations hybrid devices interfaces Josephson junctions Materials science Nanotechnology devices Nanowires Quantum computing semiconducting nanowires Superconductivity Superconductors Synthesis Topology |
title | Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Shot%20Fabrication%20of%20Semiconducting%E2%80%93Superconducting%20Nanowire%20Devices&rft.jtitle=Advanced%20functional%20materials&rft.au=Borsoi,%20Francesco&rft.date=2021-08-01&rft.volume=31&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202102388&rft_dat=%3Cproquest_cross%3E2562851466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562851466&rft_id=info:pmid/&rfr_iscdi=true |