Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices

Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-08, Vol.31 (34), p.n/a
Hauptverfasser: Borsoi, Francesco, Mazur, Grzegorz P., van Loo, Nick, Nowak, Michał P., Bourdet, Léo, Li, Kongyi, Korneychuk, Svetlana, Fursina, Alexandra, Wang, Ji‐Yin, Levajac, Vukan, Memisevic, Elvedin, Badawy, Ghada, Gazibegovic, Sasa, van Hoogdalem, Kevin, Bakkers, Erik P. A. M., Kouwenhoven, Leo P., Heedt, Sebastian, Quintero‐Pérez, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page
container_title Advanced functional materials
container_volume 31
creator Borsoi, Francesco
Mazur, Grzegorz P.
van Loo, Nick
Nowak, Michał P.
Bourdet, Léo
Li, Kongyi
Korneychuk, Svetlana
Fursina, Alexandra
Wang, Ji‐Yin
Levajac, Vukan
Memisevic, Elvedin
Badawy, Ghada
Gazibegovic, Sasa
van Hoogdalem, Kevin
Bakkers, Erik P. A. M.
Kouwenhoven, Leo P.
Heedt, Sebastian
Quintero‐Pérez, Marina
description Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal‐superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect‐free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano‐devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality. Semiconducting–superconducting hybrids are vital components for the realization of nanoscale devices such as topological qubits. Here, a fabrication concept is introduced, enabling the in situ, selective, and consecutive depositions of superconducting and metallic layers on semiconducting nanowires forming hybrid junctions in a single shot. By eliminating conventional nanofabrication steps, all devices reveal sharp interfaces and hard gap induced superconductivity.
doi_str_mv 10.1002/adfm.202102388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562851466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562851466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-1d37850c0c61213c8f03b814086211b98b9de1aab53983a18c483a55a78fe8403</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKdXzwXPnXlJ06bHsTkV5jxUwVtI01QztmYmrWO3fQTBb7hPYkdlO3r6Px6__3vwQ-ga8AAwJreyKJcDgglgQjk_QT2IIQ4pJvz0MMPbObrwfo4xJAmNemiWmep9oXfb7-zD1sFE5s4oWRtbBbYMMr00ylZFo-oW221_smal3XETzGRl18bpYKy_jNL-Ep2VcuH11V_20evk7mX0EE6f7x9Hw2moKEt4CAVNOMMKqxgIUMVLTHMOEeYxAchTnqeFBilzRlNOJXAVtcGYTHipeYRpH910d1fOfjba12JuG1e1LwVhMeEMojhuqUFHKWe9d7oUK2eW0m0EYLF3JvbOxMFZW0i7wtos9OYfWgzHk6dj9xeqBXGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562851466</pqid></control><display><type>article</type><title>Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Borsoi, Francesco ; Mazur, Grzegorz P. ; van Loo, Nick ; Nowak, Michał P. ; Bourdet, Léo ; Li, Kongyi ; Korneychuk, Svetlana ; Fursina, Alexandra ; Wang, Ji‐Yin ; Levajac, Vukan ; Memisevic, Elvedin ; Badawy, Ghada ; Gazibegovic, Sasa ; van Hoogdalem, Kevin ; Bakkers, Erik P. A. M. ; Kouwenhoven, Leo P. ; Heedt, Sebastian ; Quintero‐Pérez, Marina</creator><creatorcontrib>Borsoi, Francesco ; Mazur, Grzegorz P. ; van Loo, Nick ; Nowak, Michał P. ; Bourdet, Léo ; Li, Kongyi ; Korneychuk, Svetlana ; Fursina, Alexandra ; Wang, Ji‐Yin ; Levajac, Vukan ; Memisevic, Elvedin ; Badawy, Ghada ; Gazibegovic, Sasa ; van Hoogdalem, Kevin ; Bakkers, Erik P. A. M. ; Kouwenhoven, Leo P. ; Heedt, Sebastian ; Quintero‐Pérez, Marina</creatorcontrib><description>Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal‐superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect‐free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano‐devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality. Semiconducting–superconducting hybrids are vital components for the realization of nanoscale devices such as topological qubits. Here, a fabrication concept is introduced, enabling the in situ, selective, and consecutive depositions of superconducting and metallic layers on semiconducting nanowires forming hybrid junctions in a single shot. By eliminating conventional nanofabrication steps, all devices reveal sharp interfaces and hard gap induced superconductivity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202102388</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Devices ; Electrical junctions ; Elementary excitations ; hybrid devices ; interfaces ; Josephson junctions ; Materials science ; Nanotechnology devices ; Nanowires ; Quantum computing ; semiconducting nanowires ; Superconductivity ; Superconductors ; Synthesis ; Topology</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (34), p.n/a</ispartof><rights>2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-1d37850c0c61213c8f03b814086211b98b9de1aab53983a18c483a55a78fe8403</citedby><cites>FETCH-LOGICAL-c3578-1d37850c0c61213c8f03b814086211b98b9de1aab53983a18c483a55a78fe8403</cites><orcidid>0000-0002-2740-9688 ; 0000-0001-9398-7614 ; 0000-0003-0050-6688 ; 0000-0002-8264-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202102388$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202102388$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Borsoi, Francesco</creatorcontrib><creatorcontrib>Mazur, Grzegorz P.</creatorcontrib><creatorcontrib>van Loo, Nick</creatorcontrib><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Bourdet, Léo</creatorcontrib><creatorcontrib>Li, Kongyi</creatorcontrib><creatorcontrib>Korneychuk, Svetlana</creatorcontrib><creatorcontrib>Fursina, Alexandra</creatorcontrib><creatorcontrib>Wang, Ji‐Yin</creatorcontrib><creatorcontrib>Levajac, Vukan</creatorcontrib><creatorcontrib>Memisevic, Elvedin</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Gazibegovic, Sasa</creatorcontrib><creatorcontrib>van Hoogdalem, Kevin</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Heedt, Sebastian</creatorcontrib><creatorcontrib>Quintero‐Pérez, Marina</creatorcontrib><title>Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices</title><title>Advanced functional materials</title><description>Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal‐superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect‐free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano‐devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality. Semiconducting–superconducting hybrids are vital components for the realization of nanoscale devices such as topological qubits. Here, a fabrication concept is introduced, enabling the in situ, selective, and consecutive depositions of superconducting and metallic layers on semiconducting nanowires forming hybrid junctions in a single shot. By eliminating conventional nanofabrication steps, all devices reveal sharp interfaces and hard gap induced superconductivity.</description><subject>Devices</subject><subject>Electrical junctions</subject><subject>Elementary excitations</subject><subject>hybrid devices</subject><subject>interfaces</subject><subject>Josephson junctions</subject><subject>Materials science</subject><subject>Nanotechnology devices</subject><subject>Nanowires</subject><subject>Quantum computing</subject><subject>semiconducting nanowires</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Synthesis</subject><subject>Topology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEFLwzAUx4MoOKdXzwXPnXlJ06bHsTkV5jxUwVtI01QztmYmrWO3fQTBb7hPYkdlO3r6Px6__3vwQ-ga8AAwJreyKJcDgglgQjk_QT2IIQ4pJvz0MMPbObrwfo4xJAmNemiWmep9oXfb7-zD1sFE5s4oWRtbBbYMMr00ylZFo-oW221_smal3XETzGRl18bpYKy_jNL-Ep2VcuH11V_20evk7mX0EE6f7x9Hw2moKEt4CAVNOMMKqxgIUMVLTHMOEeYxAchTnqeFBilzRlNOJXAVtcGYTHipeYRpH910d1fOfjba12JuG1e1LwVhMeEMojhuqUFHKWe9d7oUK2eW0m0EYLF3JvbOxMFZW0i7wtos9OYfWgzHk6dj9xeqBXGo</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Borsoi, Francesco</creator><creator>Mazur, Grzegorz P.</creator><creator>van Loo, Nick</creator><creator>Nowak, Michał P.</creator><creator>Bourdet, Léo</creator><creator>Li, Kongyi</creator><creator>Korneychuk, Svetlana</creator><creator>Fursina, Alexandra</creator><creator>Wang, Ji‐Yin</creator><creator>Levajac, Vukan</creator><creator>Memisevic, Elvedin</creator><creator>Badawy, Ghada</creator><creator>Gazibegovic, Sasa</creator><creator>van Hoogdalem, Kevin</creator><creator>Bakkers, Erik P. A. M.</creator><creator>Kouwenhoven, Leo P.</creator><creator>Heedt, Sebastian</creator><creator>Quintero‐Pérez, Marina</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2740-9688</orcidid><orcidid>https://orcid.org/0000-0001-9398-7614</orcidid><orcidid>https://orcid.org/0000-0003-0050-6688</orcidid><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid></search><sort><creationdate>20210801</creationdate><title>Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices</title><author>Borsoi, Francesco ; Mazur, Grzegorz P. ; van Loo, Nick ; Nowak, Michał P. ; Bourdet, Léo ; Li, Kongyi ; Korneychuk, Svetlana ; Fursina, Alexandra ; Wang, Ji‐Yin ; Levajac, Vukan ; Memisevic, Elvedin ; Badawy, Ghada ; Gazibegovic, Sasa ; van Hoogdalem, Kevin ; Bakkers, Erik P. A. M. ; Kouwenhoven, Leo P. ; Heedt, Sebastian ; Quintero‐Pérez, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-1d37850c0c61213c8f03b814086211b98b9de1aab53983a18c483a55a78fe8403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Devices</topic><topic>Electrical junctions</topic><topic>Elementary excitations</topic><topic>hybrid devices</topic><topic>interfaces</topic><topic>Josephson junctions</topic><topic>Materials science</topic><topic>Nanotechnology devices</topic><topic>Nanowires</topic><topic>Quantum computing</topic><topic>semiconducting nanowires</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Synthesis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borsoi, Francesco</creatorcontrib><creatorcontrib>Mazur, Grzegorz P.</creatorcontrib><creatorcontrib>van Loo, Nick</creatorcontrib><creatorcontrib>Nowak, Michał P.</creatorcontrib><creatorcontrib>Bourdet, Léo</creatorcontrib><creatorcontrib>Li, Kongyi</creatorcontrib><creatorcontrib>Korneychuk, Svetlana</creatorcontrib><creatorcontrib>Fursina, Alexandra</creatorcontrib><creatorcontrib>Wang, Ji‐Yin</creatorcontrib><creatorcontrib>Levajac, Vukan</creatorcontrib><creatorcontrib>Memisevic, Elvedin</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Gazibegovic, Sasa</creatorcontrib><creatorcontrib>van Hoogdalem, Kevin</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Heedt, Sebastian</creatorcontrib><creatorcontrib>Quintero‐Pérez, Marina</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borsoi, Francesco</au><au>Mazur, Grzegorz P.</au><au>van Loo, Nick</au><au>Nowak, Michał P.</au><au>Bourdet, Léo</au><au>Li, Kongyi</au><au>Korneychuk, Svetlana</au><au>Fursina, Alexandra</au><au>Wang, Ji‐Yin</au><au>Levajac, Vukan</au><au>Memisevic, Elvedin</au><au>Badawy, Ghada</au><au>Gazibegovic, Sasa</au><au>van Hoogdalem, Kevin</au><au>Bakkers, Erik P. A. M.</au><au>Kouwenhoven, Leo P.</au><au>Heedt, Sebastian</au><au>Quintero‐Pérez, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Semiconducting–superconducting hybrids are vital components for the realization of high‐performance nanoscale devices. In particular, semiconducting–superconducting nanowires attract widespread interest owing to the possible presence of non‐abelian Majorana zero modes, which are quasiparticles that hold promise for topological quantum computing. However, systematic search for Majoranas signatures is challenging because it requires reproducible hybrid devices and reliable fabrication methods. This work introduces a fabrication concept based on shadow walls that enables the in situ, selective, and consecutive depositions of superconductors and normal metals to form normal‐superconducting junctions. Crucially, this method allows to realize devices in a single shot, eliminating fabrication steps after the synthesis of the fragile semiconductor/superconductor interface. At the atomic level, all investigated devices reveal a sharp and defect‐free semiconducting–superconducting interface and, correspondingly, a hard induced superconducting gap resilient up to 2 T is measured electrically. While the cleanliness of the technique enables systematic studies of topological superconductivity in nanowires, it also allows for the synthesis of advanced nano‐devices based on a wide range of material combinations and geometries while maintaining an exceptionally high interface quality. Semiconducting–superconducting hybrids are vital components for the realization of nanoscale devices such as topological qubits. Here, a fabrication concept is introduced, enabling the in situ, selective, and consecutive depositions of superconducting and metallic layers on semiconducting nanowires forming hybrid junctions in a single shot. By eliminating conventional nanofabrication steps, all devices reveal sharp interfaces and hard gap induced superconductivity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202102388</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2740-9688</orcidid><orcidid>https://orcid.org/0000-0001-9398-7614</orcidid><orcidid>https://orcid.org/0000-0003-0050-6688</orcidid><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-08, Vol.31 (34), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2562851466
source Wiley Online Library Journals Frontfile Complete
subjects Devices
Electrical junctions
Elementary excitations
hybrid devices
interfaces
Josephson junctions
Materials science
Nanotechnology devices
Nanowires
Quantum computing
semiconducting nanowires
Superconductivity
Superconductors
Synthesis
Topology
title Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Shot%20Fabrication%20of%20Semiconducting%E2%80%93Superconducting%20Nanowire%20Devices&rft.jtitle=Advanced%20functional%20materials&rft.au=Borsoi,%20Francesco&rft.date=2021-08-01&rft.volume=31&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202102388&rft_dat=%3Cproquest_cross%3E2562851466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562851466&rft_id=info:pmid/&rfr_iscdi=true