Real‐time characterization of aerosol particle composition, sources and influences of increased ventilation and humidity in an office
Most of human exposure to atmospheric pollutants occurs indoors, and the components of outdoor aerosols may have been changed in the way before reaching indoor spaces. Here we conducted real‐time online measurements of mass concentrations and chemical composition of black carbon and the non‐refracto...
Gespeichert in:
Veröffentlicht in: | Indoor air 2021-09, Vol.31 (5), p.1364-1376 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1376 |
---|---|
container_issue | 5 |
container_start_page | 1364 |
container_title | Indoor air |
container_volume | 31 |
creator | Li, Junyao Xu, Weiqi Li, Zhijie Duan, Minzheng Ouyang, Bin Zhou, Shan Lei, Lu He, Yao Sun, Jiaxing Wang, Zifa Du, Lin Sun, Yele |
description | Most of human exposure to atmospheric pollutants occurs indoors, and the components of outdoor aerosols may have been changed in the way before reaching indoor spaces. Here we conducted real‐time online measurements of mass concentrations and chemical composition of black carbon and the non‐refractory species in PM2.5 in an occupied office for approximately one month. The open‐close windows and controlled dampness experiments were also performed. Our results show that indoor aerosol species primarily originate from outdoors with indoor/outdoor ratio of these species typically less than unity except for certain organic aerosol (OA) factors. All aerosol species went through filtration upon transport indoors. Ammonium nitrate and fossil fuel OA underwent evaporation or particle‐to‐gas partitioning, while less oxidized secondary OA (SOA) underwent secondary formation and cooking OA might have indoor sources. With higher particulate matter (PM) mass concentration outdoors than in the office, elevated natural ventilation increased PM exposure indoors and this increased exposure was prolonged when outdoor PM was scavenged. We found that increasing humidity in the office led to higher indoor PM mass concentration particularly more oxidized SOA. Overall, our results highlight that indoor exposure of occupants is substantially different from outdoor in terms of mass concentrations and chemical species. |
doi_str_mv | 10.1111/ina.12838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562845559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562845559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-f79f2adf8c8f1d5416db0351877c1752e0ea0d29000b7e322acd8022e4fa13c83</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlYXvoAMuBKcNpe5ZJaleCkUBdH1kCYnNGUuNZlR6sqdW5_RJzHjVHdmczicL9_h_AidEjwm_k1MJcaEcsb30JAkGIc4Sfg-GuIMx2GSRekAHTm3xpikLGOHaMAYTxPOkiH6eABRfL1_NqaEQK6EFbIBa95EY-oqqHUgwNauLoKNsI2RhYfqclM7080vA1e3VoILRKUCU-mihapr_T9TSQvCgQpeoGpM0Qs7btWWRplm6xHfe1YbCcfoQIvCwcmujtDT9dXj7DZc3N_MZ9NFKBnnPNRppqlQmkuuiYojkqglZjHhaSpJGlPAILCiGcZ4mQKjVEjFMaUQaUGY5GyEznvvxtbPLbgmX_sTKr8yp3FCeRTHceapi56S_nhnQecba0phtznBeRd57iPPfyL37NnO2C5LUH_kb8YemPTAqylg-78pn99Ne-U3d_aOLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562845559</pqid></control><display><type>article</type><title>Real‐time characterization of aerosol particle composition, sources and influences of increased ventilation and humidity in an office</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Junyao ; Xu, Weiqi ; Li, Zhijie ; Duan, Minzheng ; Ouyang, Bin ; Zhou, Shan ; Lei, Lu ; He, Yao ; Sun, Jiaxing ; Wang, Zifa ; Du, Lin ; Sun, Yele</creator><creatorcontrib>Li, Junyao ; Xu, Weiqi ; Li, Zhijie ; Duan, Minzheng ; Ouyang, Bin ; Zhou, Shan ; Lei, Lu ; He, Yao ; Sun, Jiaxing ; Wang, Zifa ; Du, Lin ; Sun, Yele</creatorcontrib><description>Most of human exposure to atmospheric pollutants occurs indoors, and the components of outdoor aerosols may have been changed in the way before reaching indoor spaces. Here we conducted real‐time online measurements of mass concentrations and chemical composition of black carbon and the non‐refractory species in PM2.5 in an occupied office for approximately one month. The open‐close windows and controlled dampness experiments were also performed. Our results show that indoor aerosol species primarily originate from outdoors with indoor/outdoor ratio of these species typically less than unity except for certain organic aerosol (OA) factors. All aerosol species went through filtration upon transport indoors. Ammonium nitrate and fossil fuel OA underwent evaporation or particle‐to‐gas partitioning, while less oxidized secondary OA (SOA) underwent secondary formation and cooking OA might have indoor sources. With higher particulate matter (PM) mass concentration outdoors than in the office, elevated natural ventilation increased PM exposure indoors and this increased exposure was prolonged when outdoor PM was scavenged. We found that increasing humidity in the office led to higher indoor PM mass concentration particularly more oxidized SOA. Overall, our results highlight that indoor exposure of occupants is substantially different from outdoor in terms of mass concentrations and chemical species.</description><identifier>ISSN: 0905-6947</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12838</identifier><identifier>PMID: 33876836</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>aerosol composition ; Aerosols ; Airborne particulates ; Ammonium ; Ammonium nitrate ; Black carbon ; Chemical composition ; Chemical speciation ; Cooking ; dampness ; Evaporation ; Exposure ; Fossil fuels ; Humidity ; Indoor air pollution ; Indoor air quality ; Indoor environments ; indoor pollutants ; indoor/outdoor exchange ; Moisture content ; organic aerosol ; Particulate emissions ; Particulate matter ; Pollutants ; Species ; Time measurement ; Ventilation</subject><ispartof>Indoor air, 2021-09, Vol.31 (5), p.1364-1376</ispartof><rights>2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><rights>2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2021 John Wiley & Sons A/S</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-f79f2adf8c8f1d5416db0351877c1752e0ea0d29000b7e322acd8022e4fa13c83</citedby><cites>FETCH-LOGICAL-c3888-f79f2adf8c8f1d5416db0351877c1752e0ea0d29000b7e322acd8022e4fa13c83</cites><orcidid>0000-0003-2354-0221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12838$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12838$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33876836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Junyao</creatorcontrib><creatorcontrib>Xu, Weiqi</creatorcontrib><creatorcontrib>Li, Zhijie</creatorcontrib><creatorcontrib>Duan, Minzheng</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Zhou, Shan</creatorcontrib><creatorcontrib>Lei, Lu</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><creatorcontrib>Sun, Jiaxing</creatorcontrib><creatorcontrib>Wang, Zifa</creatorcontrib><creatorcontrib>Du, Lin</creatorcontrib><creatorcontrib>Sun, Yele</creatorcontrib><title>Real‐time characterization of aerosol particle composition, sources and influences of increased ventilation and humidity in an office</title><title>Indoor air</title><addtitle>Indoor Air</addtitle><description>Most of human exposure to atmospheric pollutants occurs indoors, and the components of outdoor aerosols may have been changed in the way before reaching indoor spaces. Here we conducted real‐time online measurements of mass concentrations and chemical composition of black carbon and the non‐refractory species in PM2.5 in an occupied office for approximately one month. The open‐close windows and controlled dampness experiments were also performed. Our results show that indoor aerosol species primarily originate from outdoors with indoor/outdoor ratio of these species typically less than unity except for certain organic aerosol (OA) factors. All aerosol species went through filtration upon transport indoors. Ammonium nitrate and fossil fuel OA underwent evaporation or particle‐to‐gas partitioning, while less oxidized secondary OA (SOA) underwent secondary formation and cooking OA might have indoor sources. With higher particulate matter (PM) mass concentration outdoors than in the office, elevated natural ventilation increased PM exposure indoors and this increased exposure was prolonged when outdoor PM was scavenged. We found that increasing humidity in the office led to higher indoor PM mass concentration particularly more oxidized SOA. Overall, our results highlight that indoor exposure of occupants is substantially different from outdoor in terms of mass concentrations and chemical species.</description><subject>aerosol composition</subject><subject>Aerosols</subject><subject>Airborne particulates</subject><subject>Ammonium</subject><subject>Ammonium nitrate</subject><subject>Black carbon</subject><subject>Chemical composition</subject><subject>Chemical speciation</subject><subject>Cooking</subject><subject>dampness</subject><subject>Evaporation</subject><subject>Exposure</subject><subject>Fossil fuels</subject><subject>Humidity</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Indoor environments</subject><subject>indoor pollutants</subject><subject>indoor/outdoor exchange</subject><subject>Moisture content</subject><subject>organic aerosol</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Pollutants</subject><subject>Species</subject><subject>Time measurement</subject><subject>Ventilation</subject><issn>0905-6947</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMotlYXvoAMuBKcNpe5ZJaleCkUBdH1kCYnNGUuNZlR6sqdW5_RJzHjVHdmczicL9_h_AidEjwm_k1MJcaEcsb30JAkGIc4Sfg-GuIMx2GSRekAHTm3xpikLGOHaMAYTxPOkiH6eABRfL1_NqaEQK6EFbIBa95EY-oqqHUgwNauLoKNsI2RhYfqclM7080vA1e3VoILRKUCU-mihapr_T9TSQvCgQpeoGpM0Qs7btWWRplm6xHfe1YbCcfoQIvCwcmujtDT9dXj7DZc3N_MZ9NFKBnnPNRppqlQmkuuiYojkqglZjHhaSpJGlPAILCiGcZ4mQKjVEjFMaUQaUGY5GyEznvvxtbPLbgmX_sTKr8yp3FCeRTHceapi56S_nhnQecba0phtznBeRd57iPPfyL37NnO2C5LUH_kb8YemPTAqylg-78pn99Ne-U3d_aOLg</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Li, Junyao</creator><creator>Xu, Weiqi</creator><creator>Li, Zhijie</creator><creator>Duan, Minzheng</creator><creator>Ouyang, Bin</creator><creator>Zhou, Shan</creator><creator>Lei, Lu</creator><creator>He, Yao</creator><creator>Sun, Jiaxing</creator><creator>Wang, Zifa</creator><creator>Du, Lin</creator><creator>Sun, Yele</creator><general>Hindawi Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2354-0221</orcidid></search><sort><creationdate>202109</creationdate><title>Real‐time characterization of aerosol particle composition, sources and influences of increased ventilation and humidity in an office</title><author>Li, Junyao ; Xu, Weiqi ; Li, Zhijie ; Duan, Minzheng ; Ouyang, Bin ; Zhou, Shan ; Lei, Lu ; He, Yao ; Sun, Jiaxing ; Wang, Zifa ; Du, Lin ; Sun, Yele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-f79f2adf8c8f1d5416db0351877c1752e0ea0d29000b7e322acd8022e4fa13c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aerosol composition</topic><topic>Aerosols</topic><topic>Airborne particulates</topic><topic>Ammonium</topic><topic>Ammonium nitrate</topic><topic>Black carbon</topic><topic>Chemical composition</topic><topic>Chemical speciation</topic><topic>Cooking</topic><topic>dampness</topic><topic>Evaporation</topic><topic>Exposure</topic><topic>Fossil fuels</topic><topic>Humidity</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Indoor environments</topic><topic>indoor pollutants</topic><topic>indoor/outdoor exchange</topic><topic>Moisture content</topic><topic>organic aerosol</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Pollutants</topic><topic>Species</topic><topic>Time measurement</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junyao</creatorcontrib><creatorcontrib>Xu, Weiqi</creatorcontrib><creatorcontrib>Li, Zhijie</creatorcontrib><creatorcontrib>Duan, Minzheng</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Zhou, Shan</creatorcontrib><creatorcontrib>Lei, Lu</creatorcontrib><creatorcontrib>He, Yao</creatorcontrib><creatorcontrib>Sun, Jiaxing</creatorcontrib><creatorcontrib>Wang, Zifa</creatorcontrib><creatorcontrib>Du, Lin</creatorcontrib><creatorcontrib>Sun, Yele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junyao</au><au>Xu, Weiqi</au><au>Li, Zhijie</au><au>Duan, Minzheng</au><au>Ouyang, Bin</au><au>Zhou, Shan</au><au>Lei, Lu</au><au>He, Yao</au><au>Sun, Jiaxing</au><au>Wang, Zifa</au><au>Du, Lin</au><au>Sun, Yele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real‐time characterization of aerosol particle composition, sources and influences of increased ventilation and humidity in an office</atitle><jtitle>Indoor air</jtitle><addtitle>Indoor Air</addtitle><date>2021-09</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>1364</spage><epage>1376</epage><pages>1364-1376</pages><issn>0905-6947</issn><eissn>1600-0668</eissn><abstract>Most of human exposure to atmospheric pollutants occurs indoors, and the components of outdoor aerosols may have been changed in the way before reaching indoor spaces. Here we conducted real‐time online measurements of mass concentrations and chemical composition of black carbon and the non‐refractory species in PM2.5 in an occupied office for approximately one month. The open‐close windows and controlled dampness experiments were also performed. Our results show that indoor aerosol species primarily originate from outdoors with indoor/outdoor ratio of these species typically less than unity except for certain organic aerosol (OA) factors. All aerosol species went through filtration upon transport indoors. Ammonium nitrate and fossil fuel OA underwent evaporation or particle‐to‐gas partitioning, while less oxidized secondary OA (SOA) underwent secondary formation and cooking OA might have indoor sources. With higher particulate matter (PM) mass concentration outdoors than in the office, elevated natural ventilation increased PM exposure indoors and this increased exposure was prolonged when outdoor PM was scavenged. We found that increasing humidity in the office led to higher indoor PM mass concentration particularly more oxidized SOA. Overall, our results highlight that indoor exposure of occupants is substantially different from outdoor in terms of mass concentrations and chemical species.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>33876836</pmid><doi>10.1111/ina.12838</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2354-0221</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0905-6947 |
ispartof | Indoor air, 2021-09, Vol.31 (5), p.1364-1376 |
issn | 0905-6947 1600-0668 |
language | eng |
recordid | cdi_proquest_journals_2562845559 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | aerosol composition Aerosols Airborne particulates Ammonium Ammonium nitrate Black carbon Chemical composition Chemical speciation Cooking dampness Evaporation Exposure Fossil fuels Humidity Indoor air pollution Indoor air quality Indoor environments indoor pollutants indoor/outdoor exchange Moisture content organic aerosol Particulate emissions Particulate matter Pollutants Species Time measurement Ventilation |
title | Real‐time characterization of aerosol particle composition, sources and influences of increased ventilation and humidity in an office |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%E2%80%90time%20characterization%20of%20aerosol%20particle%20composition,%20sources%20and%20influences%20of%20increased%20ventilation%20and%20humidity%20in%20an%20office&rft.jtitle=Indoor%20air&rft.au=Li,%20Junyao&rft.date=2021-09&rft.volume=31&rft.issue=5&rft.spage=1364&rft.epage=1376&rft.pages=1364-1376&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12838&rft_dat=%3Cproquest_cross%3E2562845559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562845559&rft_id=info:pmid/33876836&rfr_iscdi=true |