A finite element computational framework for enhanced photostrictive performance in 0–3 composites

Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb 0.92 La 0.08 (Zr 0.65 Ti 0.35 ) 0.98 O 3 (PLZT) ceramic. In contrast to the traditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanics and materials in design 2021-09, Vol.17 (3), p.609-632
Hauptverfasser: Singh, Diwakar, Sharma, Saurav, Karmakar, Saptarshi, Kumar, Rajeev, Chauhan, Vishal S., Vaish, Rahul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 3
container_start_page 609
container_title International journal of mechanics and materials in design
container_volume 17
creator Singh, Diwakar
Sharma, Saurav
Karmakar, Saptarshi
Kumar, Rajeev
Chauhan, Vishal S.
Vaish, Rahul
description Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb 0.92 La 0.08 (Zr 0.65 Ti 0.35 ) 0.98 O 3 (PLZT) ceramic. In contrast to the traditional approaches of improving deflection response, the current study proposes a 0–3 composite model to substantially enhance the effective material properties, which in turn significantly improves the deflection response. A computational framework based on finite element analysis is employed to 0–3 photostrictive composite of PLZT as matrix and Pb(Mg 1/3 Nb 2/3 )O 3 -0.35PbTiO 3 (PMN-35PT) as the inclusions. The representative volume element (RVE) or unit cell technique is used to incorporate the local variation of constituent properties and to calculate photostrictive properties such as effective elastic, dielectric, piezoelectric, and pyroelectric properties. An opto-electro-thermo-mechanical finite element formulation was engaged to get the actuation response of photostrictive material bonded to cantilever and simply supported beam. The maximum deflection for cantilever beam attached to photostrictive composite patch having 25% inclusions volume fraction in 0–3 composite is found to be 38% more in comparison to pure PLZT material. It is established that the opto-electro-mechanical 0–3 composite actuators possess high potential in lightweight, compact and wireless actuation applications.
doi_str_mv 10.1007/s10999-021-09550-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562844440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562844440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b5765e05948df83dd3051c4ed0c82b6f3c3cdaffa59d5051df4f94af5ce719463</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOnozmcxMlqX4BwU3ug5pfuzUzmRMUsWd7-Ab-iSmHcGdd3MvnHM-uAehcwqXFKC-ihSEEAQKSkBwDgQO0ITympGmKenh7q4EoTVlx-gkxjUAA9o0E2Rm2LV9myy2G9vZPmHtu2GbVGp9rzbYBdXZdx9esPMB236lem0NHlY--ZhCq1P7ZvFgQ5a7nYbbHsP35xfbg3zM6HiKjpzaRHv2u6fo6eb6cX5HFg-39_PZgmhGRSJLXlfcAhdlY1zDjGHAqS6tAd0Uy8oxzbRRzikuDM-ScaUTpXJc25qKsmJTdDFyh-BftzYmufbbkN-IsuBV0ZR5ILuK0aWDjzFYJ4fQdip8SApy16Yc25S5TblvU-5CbAzFbO6fbfhD_5P6ARV8epk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562844440</pqid></control><display><type>article</type><title>A finite element computational framework for enhanced photostrictive performance in 0–3 composites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Diwakar ; Sharma, Saurav ; Karmakar, Saptarshi ; Kumar, Rajeev ; Chauhan, Vishal S. ; Vaish, Rahul</creator><creatorcontrib>Singh, Diwakar ; Sharma, Saurav ; Karmakar, Saptarshi ; Kumar, Rajeev ; Chauhan, Vishal S. ; Vaish, Rahul</creatorcontrib><description>Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb 0.92 La 0.08 (Zr 0.65 Ti 0.35 ) 0.98 O 3 (PLZT) ceramic. In contrast to the traditional approaches of improving deflection response, the current study proposes a 0–3 composite model to substantially enhance the effective material properties, which in turn significantly improves the deflection response. A computational framework based on finite element analysis is employed to 0–3 photostrictive composite of PLZT as matrix and Pb(Mg 1/3 Nb 2/3 )O 3 -0.35PbTiO 3 (PMN-35PT) as the inclusions. The representative volume element (RVE) or unit cell technique is used to incorporate the local variation of constituent properties and to calculate photostrictive properties such as effective elastic, dielectric, piezoelectric, and pyroelectric properties. An opto-electro-thermo-mechanical finite element formulation was engaged to get the actuation response of photostrictive material bonded to cantilever and simply supported beam. The maximum deflection for cantilever beam attached to photostrictive composite patch having 25% inclusions volume fraction in 0–3 composite is found to be 38% more in comparison to pure PLZT material. It is established that the opto-electro-mechanical 0–3 composite actuators possess high potential in lightweight, compact and wireless actuation applications.</description><identifier>ISSN: 1569-1713</identifier><identifier>EISSN: 1573-8841</identifier><identifier>DOI: 10.1007/s10999-021-09550-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Actuation ; Actuators ; Cantilever beams ; Characterization and Evaluation of Materials ; Classical Mechanics ; Deflection ; Engineering ; Engineering Design ; Finite element method ; Inclusions ; Lanthanum ; Lead lanthanum zirconate titanate ; Material properties ; Mathematical analysis ; Photovoltaic effect ; Piezoelectricity ; Solid Mechanics ; Thermomechanical properties ; Unit cell</subject><ispartof>International journal of mechanics and materials in design, 2021-09, Vol.17 (3), p.609-632</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b5765e05948df83dd3051c4ed0c82b6f3c3cdaffa59d5051df4f94af5ce719463</citedby><cites>FETCH-LOGICAL-c319t-b5765e05948df83dd3051c4ed0c82b6f3c3cdaffa59d5051df4f94af5ce719463</cites><orcidid>0000-0002-8733-9861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10999-021-09550-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10999-021-09550-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Singh, Diwakar</creatorcontrib><creatorcontrib>Sharma, Saurav</creatorcontrib><creatorcontrib>Karmakar, Saptarshi</creatorcontrib><creatorcontrib>Kumar, Rajeev</creatorcontrib><creatorcontrib>Chauhan, Vishal S.</creatorcontrib><creatorcontrib>Vaish, Rahul</creatorcontrib><title>A finite element computational framework for enhanced photostrictive performance in 0–3 composites</title><title>International journal of mechanics and materials in design</title><addtitle>Int J Mech Mater Des</addtitle><description>Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb 0.92 La 0.08 (Zr 0.65 Ti 0.35 ) 0.98 O 3 (PLZT) ceramic. In contrast to the traditional approaches of improving deflection response, the current study proposes a 0–3 composite model to substantially enhance the effective material properties, which in turn significantly improves the deflection response. A computational framework based on finite element analysis is employed to 0–3 photostrictive composite of PLZT as matrix and Pb(Mg 1/3 Nb 2/3 )O 3 -0.35PbTiO 3 (PMN-35PT) as the inclusions. The representative volume element (RVE) or unit cell technique is used to incorporate the local variation of constituent properties and to calculate photostrictive properties such as effective elastic, dielectric, piezoelectric, and pyroelectric properties. An opto-electro-thermo-mechanical finite element formulation was engaged to get the actuation response of photostrictive material bonded to cantilever and simply supported beam. The maximum deflection for cantilever beam attached to photostrictive composite patch having 25% inclusions volume fraction in 0–3 composite is found to be 38% more in comparison to pure PLZT material. It is established that the opto-electro-mechanical 0–3 composite actuators possess high potential in lightweight, compact and wireless actuation applications.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Cantilever beams</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Deflection</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Inclusions</subject><subject>Lanthanum</subject><subject>Lead lanthanum zirconate titanate</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Photovoltaic effect</subject><subject>Piezoelectricity</subject><subject>Solid Mechanics</subject><subject>Thermomechanical properties</subject><subject>Unit cell</subject><issn>1569-1713</issn><issn>1573-8841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOnozmcxMlqX4BwU3ug5pfuzUzmRMUsWd7-Ab-iSmHcGdd3MvnHM-uAehcwqXFKC-ihSEEAQKSkBwDgQO0ITympGmKenh7q4EoTVlx-gkxjUAA9o0E2Rm2LV9myy2G9vZPmHtu2GbVGp9rzbYBdXZdx9esPMB236lem0NHlY--ZhCq1P7ZvFgQ5a7nYbbHsP35xfbg3zM6HiKjpzaRHv2u6fo6eb6cX5HFg-39_PZgmhGRSJLXlfcAhdlY1zDjGHAqS6tAd0Uy8oxzbRRzikuDM-ScaUTpXJc25qKsmJTdDFyh-BftzYmufbbkN-IsuBV0ZR5ILuK0aWDjzFYJ4fQdip8SApy16Yc25S5TblvU-5CbAzFbO6fbfhD_5P6ARV8epk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Singh, Diwakar</creator><creator>Sharma, Saurav</creator><creator>Karmakar, Saptarshi</creator><creator>Kumar, Rajeev</creator><creator>Chauhan, Vishal S.</creator><creator>Vaish, Rahul</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8733-9861</orcidid></search><sort><creationdate>20210901</creationdate><title>A finite element computational framework for enhanced photostrictive performance in 0–3 composites</title><author>Singh, Diwakar ; Sharma, Saurav ; Karmakar, Saptarshi ; Kumar, Rajeev ; Chauhan, Vishal S. ; Vaish, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b5765e05948df83dd3051c4ed0c82b6f3c3cdaffa59d5051df4f94af5ce719463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Cantilever beams</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Deflection</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Inclusions</topic><topic>Lanthanum</topic><topic>Lead lanthanum zirconate titanate</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Photovoltaic effect</topic><topic>Piezoelectricity</topic><topic>Solid Mechanics</topic><topic>Thermomechanical properties</topic><topic>Unit cell</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, Diwakar</creatorcontrib><creatorcontrib>Sharma, Saurav</creatorcontrib><creatorcontrib>Karmakar, Saptarshi</creatorcontrib><creatorcontrib>Kumar, Rajeev</creatorcontrib><creatorcontrib>Chauhan, Vishal S.</creatorcontrib><creatorcontrib>Vaish, Rahul</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanics and materials in design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Diwakar</au><au>Sharma, Saurav</au><au>Karmakar, Saptarshi</au><au>Kumar, Rajeev</au><au>Chauhan, Vishal S.</au><au>Vaish, Rahul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite element computational framework for enhanced photostrictive performance in 0–3 composites</atitle><jtitle>International journal of mechanics and materials in design</jtitle><stitle>Int J Mech Mater Des</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>609</spage><epage>632</epage><pages>609-632</pages><issn>1569-1713</issn><eissn>1573-8841</eissn><abstract>Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb 0.92 La 0.08 (Zr 0.65 Ti 0.35 ) 0.98 O 3 (PLZT) ceramic. In contrast to the traditional approaches of improving deflection response, the current study proposes a 0–3 composite model to substantially enhance the effective material properties, which in turn significantly improves the deflection response. A computational framework based on finite element analysis is employed to 0–3 photostrictive composite of PLZT as matrix and Pb(Mg 1/3 Nb 2/3 )O 3 -0.35PbTiO 3 (PMN-35PT) as the inclusions. The representative volume element (RVE) or unit cell technique is used to incorporate the local variation of constituent properties and to calculate photostrictive properties such as effective elastic, dielectric, piezoelectric, and pyroelectric properties. An opto-electro-thermo-mechanical finite element formulation was engaged to get the actuation response of photostrictive material bonded to cantilever and simply supported beam. The maximum deflection for cantilever beam attached to photostrictive composite patch having 25% inclusions volume fraction in 0–3 composite is found to be 38% more in comparison to pure PLZT material. It is established that the opto-electro-mechanical 0–3 composite actuators possess high potential in lightweight, compact and wireless actuation applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10999-021-09550-0</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8733-9861</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-1713
ispartof International journal of mechanics and materials in design, 2021-09, Vol.17 (3), p.609-632
issn 1569-1713
1573-8841
language eng
recordid cdi_proquest_journals_2562844440
source SpringerLink Journals - AutoHoldings
subjects Actuation
Actuators
Cantilever beams
Characterization and Evaluation of Materials
Classical Mechanics
Deflection
Engineering
Engineering Design
Finite element method
Inclusions
Lanthanum
Lead lanthanum zirconate titanate
Material properties
Mathematical analysis
Photovoltaic effect
Piezoelectricity
Solid Mechanics
Thermomechanical properties
Unit cell
title A finite element computational framework for enhanced photostrictive performance in 0–3 composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20element%20computational%20framework%20for%20enhanced%20photostrictive%20performance%20in%200%E2%80%933%20composites&rft.jtitle=International%20journal%20of%20mechanics%20and%20materials%20in%20design&rft.au=Singh,%20Diwakar&rft.date=2021-09-01&rft.volume=17&rft.issue=3&rft.spage=609&rft.epage=632&rft.pages=609-632&rft.issn=1569-1713&rft.eissn=1573-8841&rft_id=info:doi/10.1007/s10999-021-09550-0&rft_dat=%3Cproquest_cross%3E2562844440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562844440&rft_id=info:pmid/&rfr_iscdi=true