A finite element computational framework for enhanced photostrictive performance in 0–3 composites
Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb 0.92 La 0.08 (Zr 0.65 Ti 0.35 ) 0.98 O 3 (PLZT) ceramic. In contrast to the traditio...
Gespeichert in:
Veröffentlicht in: | International journal of mechanics and materials in design 2021-09, Vol.17 (3), p.609-632 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 632 |
---|---|
container_issue | 3 |
container_start_page | 609 |
container_title | International journal of mechanics and materials in design |
container_volume | 17 |
creator | Singh, Diwakar Sharma, Saurav Karmakar, Saptarshi Kumar, Rajeev Chauhan, Vishal S. Vaish, Rahul |
description | Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb
0.92
La
0.08
(Zr
0.65
Ti
0.35
)
0.98
O
3
(PLZT) ceramic. In contrast to the traditional approaches of improving deflection response, the current study proposes a 0–3 composite model to substantially enhance the effective material properties, which in turn significantly improves the deflection response. A computational framework based on finite element analysis is employed to 0–3 photostrictive composite of PLZT as matrix and Pb(Mg
1/3
Nb
2/3
)O
3
-0.35PbTiO
3
(PMN-35PT) as the inclusions. The representative volume element (RVE) or unit cell technique is used to incorporate the local variation of constituent properties and to calculate photostrictive properties such as effective elastic, dielectric, piezoelectric, and pyroelectric properties. An opto-electro-thermo-mechanical finite element formulation was engaged to get the actuation response of photostrictive material bonded to cantilever and simply supported beam. The maximum deflection for cantilever beam attached to photostrictive composite patch having 25% inclusions volume fraction in 0–3 composite is found to be 38% more in comparison to pure PLZT material. It is established that the opto-electro-mechanical 0–3 composite actuators possess high potential in lightweight, compact and wireless actuation applications. |
doi_str_mv | 10.1007/s10999-021-09550-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562844440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562844440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b5765e05948df83dd3051c4ed0c82b6f3c3cdaffa59d5051df4f94af5ce719463</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOnozmcxMlqX4BwU3ug5pfuzUzmRMUsWd7-Ab-iSmHcGdd3MvnHM-uAehcwqXFKC-ihSEEAQKSkBwDgQO0ITympGmKenh7q4EoTVlx-gkxjUAA9o0E2Rm2LV9myy2G9vZPmHtu2GbVGp9rzbYBdXZdx9esPMB236lem0NHlY--ZhCq1P7ZvFgQ5a7nYbbHsP35xfbg3zM6HiKjpzaRHv2u6fo6eb6cX5HFg-39_PZgmhGRSJLXlfcAhdlY1zDjGHAqS6tAd0Uy8oxzbRRzikuDM-ScaUTpXJc25qKsmJTdDFyh-BftzYmufbbkN-IsuBV0ZR5ILuK0aWDjzFYJ4fQdip8SApy16Yc25S5TblvU-5CbAzFbO6fbfhD_5P6ARV8epk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562844440</pqid></control><display><type>article</type><title>A finite element computational framework for enhanced photostrictive performance in 0–3 composites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Diwakar ; Sharma, Saurav ; Karmakar, Saptarshi ; Kumar, Rajeev ; Chauhan, Vishal S. ; Vaish, Rahul</creator><creatorcontrib>Singh, Diwakar ; Sharma, Saurav ; Karmakar, Saptarshi ; Kumar, Rajeev ; Chauhan, Vishal S. ; Vaish, Rahul</creatorcontrib><description>Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb
0.92
La
0.08
(Zr
0.65
Ti
0.35
)
0.98
O
3
(PLZT) ceramic. In contrast to the traditional approaches of improving deflection response, the current study proposes a 0–3 composite model to substantially enhance the effective material properties, which in turn significantly improves the deflection response. A computational framework based on finite element analysis is employed to 0–3 photostrictive composite of PLZT as matrix and Pb(Mg
1/3
Nb
2/3
)O
3
-0.35PbTiO
3
(PMN-35PT) as the inclusions. The representative volume element (RVE) or unit cell technique is used to incorporate the local variation of constituent properties and to calculate photostrictive properties such as effective elastic, dielectric, piezoelectric, and pyroelectric properties. An opto-electro-thermo-mechanical finite element formulation was engaged to get the actuation response of photostrictive material bonded to cantilever and simply supported beam. The maximum deflection for cantilever beam attached to photostrictive composite patch having 25% inclusions volume fraction in 0–3 composite is found to be 38% more in comparison to pure PLZT material. It is established that the opto-electro-mechanical 0–3 composite actuators possess high potential in lightweight, compact and wireless actuation applications.</description><identifier>ISSN: 1569-1713</identifier><identifier>EISSN: 1573-8841</identifier><identifier>DOI: 10.1007/s10999-021-09550-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Actuation ; Actuators ; Cantilever beams ; Characterization and Evaluation of Materials ; Classical Mechanics ; Deflection ; Engineering ; Engineering Design ; Finite element method ; Inclusions ; Lanthanum ; Lead lanthanum zirconate titanate ; Material properties ; Mathematical analysis ; Photovoltaic effect ; Piezoelectricity ; Solid Mechanics ; Thermomechanical properties ; Unit cell</subject><ispartof>International journal of mechanics and materials in design, 2021-09, Vol.17 (3), p.609-632</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b5765e05948df83dd3051c4ed0c82b6f3c3cdaffa59d5051df4f94af5ce719463</citedby><cites>FETCH-LOGICAL-c319t-b5765e05948df83dd3051c4ed0c82b6f3c3cdaffa59d5051df4f94af5ce719463</cites><orcidid>0000-0002-8733-9861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10999-021-09550-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10999-021-09550-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Singh, Diwakar</creatorcontrib><creatorcontrib>Sharma, Saurav</creatorcontrib><creatorcontrib>Karmakar, Saptarshi</creatorcontrib><creatorcontrib>Kumar, Rajeev</creatorcontrib><creatorcontrib>Chauhan, Vishal S.</creatorcontrib><creatorcontrib>Vaish, Rahul</creatorcontrib><title>A finite element computational framework for enhanced photostrictive performance in 0–3 composites</title><title>International journal of mechanics and materials in design</title><addtitle>Int J Mech Mater Des</addtitle><description>Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb
0.92
La
0.08
(Zr
0.65
Ti
0.35
)
0.98
O
3
(PLZT) ceramic. In contrast to the traditional approaches of improving deflection response, the current study proposes a 0–3 composite model to substantially enhance the effective material properties, which in turn significantly improves the deflection response. A computational framework based on finite element analysis is employed to 0–3 photostrictive composite of PLZT as matrix and Pb(Mg
1/3
Nb
2/3
)O
3
-0.35PbTiO
3
(PMN-35PT) as the inclusions. The representative volume element (RVE) or unit cell technique is used to incorporate the local variation of constituent properties and to calculate photostrictive properties such as effective elastic, dielectric, piezoelectric, and pyroelectric properties. An opto-electro-thermo-mechanical finite element formulation was engaged to get the actuation response of photostrictive material bonded to cantilever and simply supported beam. The maximum deflection for cantilever beam attached to photostrictive composite patch having 25% inclusions volume fraction in 0–3 composite is found to be 38% more in comparison to pure PLZT material. It is established that the opto-electro-mechanical 0–3 composite actuators possess high potential in lightweight, compact and wireless actuation applications.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Cantilever beams</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Deflection</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Inclusions</subject><subject>Lanthanum</subject><subject>Lead lanthanum zirconate titanate</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Photovoltaic effect</subject><subject>Piezoelectricity</subject><subject>Solid Mechanics</subject><subject>Thermomechanical properties</subject><subject>Unit cell</subject><issn>1569-1713</issn><issn>1573-8841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOnozmcxMlqX4BwU3ug5pfuzUzmRMUsWd7-Ab-iSmHcGdd3MvnHM-uAehcwqXFKC-ihSEEAQKSkBwDgQO0ITympGmKenh7q4EoTVlx-gkxjUAA9o0E2Rm2LV9myy2G9vZPmHtu2GbVGp9rzbYBdXZdx9esPMB236lem0NHlY--ZhCq1P7ZvFgQ5a7nYbbHsP35xfbg3zM6HiKjpzaRHv2u6fo6eb6cX5HFg-39_PZgmhGRSJLXlfcAhdlY1zDjGHAqS6tAd0Uy8oxzbRRzikuDM-ScaUTpXJc25qKsmJTdDFyh-BftzYmufbbkN-IsuBV0ZR5ILuK0aWDjzFYJ4fQdip8SApy16Yc25S5TblvU-5CbAzFbO6fbfhD_5P6ARV8epk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Singh, Diwakar</creator><creator>Sharma, Saurav</creator><creator>Karmakar, Saptarshi</creator><creator>Kumar, Rajeev</creator><creator>Chauhan, Vishal S.</creator><creator>Vaish, Rahul</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8733-9861</orcidid></search><sort><creationdate>20210901</creationdate><title>A finite element computational framework for enhanced photostrictive performance in 0–3 composites</title><author>Singh, Diwakar ; Sharma, Saurav ; Karmakar, Saptarshi ; Kumar, Rajeev ; Chauhan, Vishal S. ; Vaish, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b5765e05948df83dd3051c4ed0c82b6f3c3cdaffa59d5051df4f94af5ce719463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Cantilever beams</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Deflection</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Inclusions</topic><topic>Lanthanum</topic><topic>Lead lanthanum zirconate titanate</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Photovoltaic effect</topic><topic>Piezoelectricity</topic><topic>Solid Mechanics</topic><topic>Thermomechanical properties</topic><topic>Unit cell</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, Diwakar</creatorcontrib><creatorcontrib>Sharma, Saurav</creatorcontrib><creatorcontrib>Karmakar, Saptarshi</creatorcontrib><creatorcontrib>Kumar, Rajeev</creatorcontrib><creatorcontrib>Chauhan, Vishal S.</creatorcontrib><creatorcontrib>Vaish, Rahul</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanics and materials in design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Diwakar</au><au>Sharma, Saurav</au><au>Karmakar, Saptarshi</au><au>Kumar, Rajeev</au><au>Chauhan, Vishal S.</au><au>Vaish, Rahul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite element computational framework for enhanced photostrictive performance in 0–3 composites</atitle><jtitle>International journal of mechanics and materials in design</jtitle><stitle>Int J Mech Mater Des</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>609</spage><epage>632</epage><pages>609-632</pages><issn>1569-1713</issn><eissn>1573-8841</eissn><abstract>Photostriction is a multiphysics phenomenon comprising of both photovoltaic effect and converse piezoelectric effect. The extensively researched photostrictive material is lead lanthanum zirconate titanate, i.e., Pb
0.92
La
0.08
(Zr
0.65
Ti
0.35
)
0.98
O
3
(PLZT) ceramic. In contrast to the traditional approaches of improving deflection response, the current study proposes a 0–3 composite model to substantially enhance the effective material properties, which in turn significantly improves the deflection response. A computational framework based on finite element analysis is employed to 0–3 photostrictive composite of PLZT as matrix and Pb(Mg
1/3
Nb
2/3
)O
3
-0.35PbTiO
3
(PMN-35PT) as the inclusions. The representative volume element (RVE) or unit cell technique is used to incorporate the local variation of constituent properties and to calculate photostrictive properties such as effective elastic, dielectric, piezoelectric, and pyroelectric properties. An opto-electro-thermo-mechanical finite element formulation was engaged to get the actuation response of photostrictive material bonded to cantilever and simply supported beam. The maximum deflection for cantilever beam attached to photostrictive composite patch having 25% inclusions volume fraction in 0–3 composite is found to be 38% more in comparison to pure PLZT material. It is established that the opto-electro-mechanical 0–3 composite actuators possess high potential in lightweight, compact and wireless actuation applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10999-021-09550-0</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8733-9861</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-1713 |
ispartof | International journal of mechanics and materials in design, 2021-09, Vol.17 (3), p.609-632 |
issn | 1569-1713 1573-8841 |
language | eng |
recordid | cdi_proquest_journals_2562844440 |
source | SpringerLink Journals - AutoHoldings |
subjects | Actuation Actuators Cantilever beams Characterization and Evaluation of Materials Classical Mechanics Deflection Engineering Engineering Design Finite element method Inclusions Lanthanum Lead lanthanum zirconate titanate Material properties Mathematical analysis Photovoltaic effect Piezoelectricity Solid Mechanics Thermomechanical properties Unit cell |
title | A finite element computational framework for enhanced photostrictive performance in 0–3 composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20element%20computational%20framework%20for%20enhanced%20photostrictive%20performance%20in%200%E2%80%933%20composites&rft.jtitle=International%20journal%20of%20mechanics%20and%20materials%20in%20design&rft.au=Singh,%20Diwakar&rft.date=2021-09-01&rft.volume=17&rft.issue=3&rft.spage=609&rft.epage=632&rft.pages=609-632&rft.issn=1569-1713&rft.eissn=1573-8841&rft_id=info:doi/10.1007/s10999-021-09550-0&rft_dat=%3Cproquest_cross%3E2562844440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562844440&rft_id=info:pmid/&rfr_iscdi=true |