Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil

The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2020-10, Vol.943 (1), p.12036
Hauptverfasser: Manickam, Thanesh A/L, Roy, Sukanta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12036
container_title IOP conference series. Materials Science and Engineering
container_volume 943
creator Manickam, Thanesh A/L
Roy, Sukanta
description The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-edge flap can be deflected to various angle accordingly. The second configuration is a combination of, active trailing-edge flap with a passive surface roughness at the leading-edge of the airfoil. The surface roughness is expected to reduce the flow separation at the leading-edge of the airfoil. This is expected to enhance the aerodynamic performance of the airfoil. Both configuration 1 and configuration 2 was simulated and the results compared with the base airfoil without any flow control mechanism. Based on the results, airfoil with configuration 1 performed better compared to the base airfoil. Airfoil with configuration 2, performed well but not better than the airfoil with configuration 1. Upon further analysis, key patterns emphasise airfoil with configuration 2 could perform better if the roughness element parameters further optimised. This airfoil to be used for wind turbine applications.
doi_str_mv 10.1088/1757-899X/943/1/012036
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562833619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562833619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3612936746b2adf77163ee75b1a171141b2b0f971c17c22f5f341473fc5231183</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQLeeFObk6RNe1nGpsL8wE3wLmRtMjO6piarsH9vS2UiCF4lcJ73zckTBJeAbwCnaQQ85mGaZW9RxmgEEQaCaXIUjA6D48M9hdPgzPsNxglnDI8ClStny30tt6ZAeS2rvTceWY3yYmc-FVo6aSpTr8NpuVZoVsnGI1mX6Fl6388XrdOyUOjFtuv3WvkuW6PHfJIjxoCg3DhtTXUenGhZeXXxfY6D19l0ObkL50-395N8HhYM811IEyAZ7TZLVkSWmnNIqFI8XoEEDsBgRVZYZxwK4AUhOtaUAeNUFzGhACkdB1dDb-PsR6v8Tmxs67pfeUHihKS0eyHrqGSgCme9d0qLxpmtdHsBWPRKRW9L9OZEp1SAGJR2weshaGzz0_ywmP7CRFPqDiV_oP_0fwEyt4MF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562833619</pqid></control><display><type>article</type><title>Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Manickam, Thanesh A/L ; Roy, Sukanta</creator><creatorcontrib>Manickam, Thanesh A/L ; Roy, Sukanta</creatorcontrib><description>The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-edge flap can be deflected to various angle accordingly. The second configuration is a combination of, active trailing-edge flap with a passive surface roughness at the leading-edge of the airfoil. The surface roughness is expected to reduce the flow separation at the leading-edge of the airfoil. This is expected to enhance the aerodynamic performance of the airfoil. Both configuration 1 and configuration 2 was simulated and the results compared with the base airfoil without any flow control mechanism. Based on the results, airfoil with configuration 1 performed better compared to the base airfoil. Airfoil with configuration 2, performed well but not better than the airfoil with configuration 1. Upon further analysis, key patterns emphasise airfoil with configuration 2 could perform better if the roughness element parameters further optimised. This airfoil to be used for wind turbine applications.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/943/1/012036</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Active control ; Airfoils ; Configuration management ; Control methods ; Flow control ; Flow separation ; Leading edges ; Surface roughness ; Trailing edge flaps ; Wind turbines</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-10, Vol.943 (1), p.12036</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3612936746b2adf77163ee75b1a171141b2b0f971c17c22f5f341473fc5231183</citedby><cites>FETCH-LOGICAL-c407t-3612936746b2adf77163ee75b1a171141b2b0f971c17c22f5f341473fc5231183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/943/1/012036/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27911,27912,38855,38877,53827,53854</link.rule.ids></links><search><creatorcontrib>Manickam, Thanesh A/L</creatorcontrib><creatorcontrib>Roy, Sukanta</creatorcontrib><title>Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-edge flap can be deflected to various angle accordingly. The second configuration is a combination of, active trailing-edge flap with a passive surface roughness at the leading-edge of the airfoil. The surface roughness is expected to reduce the flow separation at the leading-edge of the airfoil. This is expected to enhance the aerodynamic performance of the airfoil. Both configuration 1 and configuration 2 was simulated and the results compared with the base airfoil without any flow control mechanism. Based on the results, airfoil with configuration 1 performed better compared to the base airfoil. Airfoil with configuration 2, performed well but not better than the airfoil with configuration 1. Upon further analysis, key patterns emphasise airfoil with configuration 2 could perform better if the roughness element parameters further optimised. This airfoil to be used for wind turbine applications.</description><subject>Active control</subject><subject>Airfoils</subject><subject>Configuration management</subject><subject>Control methods</subject><subject>Flow control</subject><subject>Flow separation</subject><subject>Leading edges</subject><subject>Surface roughness</subject><subject>Trailing edge flaps</subject><subject>Wind turbines</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQLeeFObk6RNe1nGpsL8wE3wLmRtMjO6piarsH9vS2UiCF4lcJ73zckTBJeAbwCnaQQ85mGaZW9RxmgEEQaCaXIUjA6D48M9hdPgzPsNxglnDI8ClStny30tt6ZAeS2rvTceWY3yYmc-FVo6aSpTr8NpuVZoVsnGI1mX6Fl6388XrdOyUOjFtuv3WvkuW6PHfJIjxoCg3DhtTXUenGhZeXXxfY6D19l0ObkL50-395N8HhYM811IEyAZ7TZLVkSWmnNIqFI8XoEEDsBgRVZYZxwK4AUhOtaUAeNUFzGhACkdB1dDb-PsR6v8Tmxs67pfeUHihKS0eyHrqGSgCme9d0qLxpmtdHsBWPRKRW9L9OZEp1SAGJR2weshaGzz0_ywmP7CRFPqDiV_oP_0fwEyt4MF</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Manickam, Thanesh A/L</creator><creator>Roy, Sukanta</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201001</creationdate><title>Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil</title><author>Manickam, Thanesh A/L ; Roy, Sukanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3612936746b2adf77163ee75b1a171141b2b0f971c17c22f5f341473fc5231183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Airfoils</topic><topic>Configuration management</topic><topic>Control methods</topic><topic>Flow control</topic><topic>Flow separation</topic><topic>Leading edges</topic><topic>Surface roughness</topic><topic>Trailing edge flaps</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manickam, Thanesh A/L</creatorcontrib><creatorcontrib>Roy, Sukanta</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manickam, Thanesh A/L</au><au>Roy, Sukanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>943</volume><issue>1</issue><spage>12036</spage><pages>12036-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-edge flap can be deflected to various angle accordingly. The second configuration is a combination of, active trailing-edge flap with a passive surface roughness at the leading-edge of the airfoil. The surface roughness is expected to reduce the flow separation at the leading-edge of the airfoil. This is expected to enhance the aerodynamic performance of the airfoil. Both configuration 1 and configuration 2 was simulated and the results compared with the base airfoil without any flow control mechanism. Based on the results, airfoil with configuration 1 performed better compared to the base airfoil. Airfoil with configuration 2, performed well but not better than the airfoil with configuration 1. Upon further analysis, key patterns emphasise airfoil with configuration 2 could perform better if the roughness element parameters further optimised. This airfoil to be used for wind turbine applications.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/943/1/012036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2020-10, Vol.943 (1), p.12036
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2562833619
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Active control
Airfoils
Configuration management
Control methods
Flow control
Flow separation
Leading edges
Surface roughness
Trailing edge flaps
Wind turbines
title Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20Analysis%20of%20Active%20Trailing-Edge%20Flaps%20and%20Passive%20Surface%20Roughness%20on%20NACA%204412%20Airfoil&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Manickam,%20Thanesh%20A/L&rft.date=2020-10-01&rft.volume=943&rft.issue=1&rft.spage=12036&rft.pages=12036-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/943/1/012036&rft_dat=%3Cproquest_iop_j%3E2562833619%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562833619&rft_id=info:pmid/&rfr_iscdi=true