Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil
The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-e...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-10, Vol.943 (1), p.12036 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12036 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 943 |
creator | Manickam, Thanesh A/L Roy, Sukanta |
description | The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-edge flap can be deflected to various angle accordingly. The second configuration is a combination of, active trailing-edge flap with a passive surface roughness at the leading-edge of the airfoil. The surface roughness is expected to reduce the flow separation at the leading-edge of the airfoil. This is expected to enhance the aerodynamic performance of the airfoil. Both configuration 1 and configuration 2 was simulated and the results compared with the base airfoil without any flow control mechanism. Based on the results, airfoil with configuration 1 performed better compared to the base airfoil. Airfoil with configuration 2, performed well but not better than the airfoil with configuration 1. Upon further analysis, key patterns emphasise airfoil with configuration 2 could perform better if the roughness element parameters further optimised. This airfoil to be used for wind turbine applications. |
doi_str_mv | 10.1088/1757-899X/943/1/012036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562833619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562833619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3612936746b2adf77163ee75b1a171141b2b0f971c17c22f5f341473fc5231183</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQLeeFObk6RNe1nGpsL8wE3wLmRtMjO6piarsH9vS2UiCF4lcJ73zckTBJeAbwCnaQQ85mGaZW9RxmgEEQaCaXIUjA6D48M9hdPgzPsNxglnDI8ClStny30tt6ZAeS2rvTceWY3yYmc-FVo6aSpTr8NpuVZoVsnGI1mX6Fl6388XrdOyUOjFtuv3WvkuW6PHfJIjxoCg3DhtTXUenGhZeXXxfY6D19l0ObkL50-395N8HhYM811IEyAZ7TZLVkSWmnNIqFI8XoEEDsBgRVZYZxwK4AUhOtaUAeNUFzGhACkdB1dDb-PsR6v8Tmxs67pfeUHihKS0eyHrqGSgCme9d0qLxpmtdHsBWPRKRW9L9OZEp1SAGJR2weshaGzz0_ywmP7CRFPqDiV_oP_0fwEyt4MF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562833619</pqid></control><display><type>article</type><title>Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Manickam, Thanesh A/L ; Roy, Sukanta</creator><creatorcontrib>Manickam, Thanesh A/L ; Roy, Sukanta</creatorcontrib><description>The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-edge flap can be deflected to various angle accordingly. The second configuration is a combination of, active trailing-edge flap with a passive surface roughness at the leading-edge of the airfoil. The surface roughness is expected to reduce the flow separation at the leading-edge of the airfoil. This is expected to enhance the aerodynamic performance of the airfoil. Both configuration 1 and configuration 2 was simulated and the results compared with the base airfoil without any flow control mechanism. Based on the results, airfoil with configuration 1 performed better compared to the base airfoil. Airfoil with configuration 2, performed well but not better than the airfoil with configuration 1. Upon further analysis, key patterns emphasise airfoil with configuration 2 could perform better if the roughness element parameters further optimised. This airfoil to be used for wind turbine applications.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/943/1/012036</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Active control ; Airfoils ; Configuration management ; Control methods ; Flow control ; Flow separation ; Leading edges ; Surface roughness ; Trailing edge flaps ; Wind turbines</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-10, Vol.943 (1), p.12036</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3612936746b2adf77163ee75b1a171141b2b0f971c17c22f5f341473fc5231183</citedby><cites>FETCH-LOGICAL-c407t-3612936746b2adf77163ee75b1a171141b2b0f971c17c22f5f341473fc5231183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/943/1/012036/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27911,27912,38855,38877,53827,53854</link.rule.ids></links><search><creatorcontrib>Manickam, Thanesh A/L</creatorcontrib><creatorcontrib>Roy, Sukanta</creatorcontrib><title>Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-edge flap can be deflected to various angle accordingly. The second configuration is a combination of, active trailing-edge flap with a passive surface roughness at the leading-edge of the airfoil. The surface roughness is expected to reduce the flow separation at the leading-edge of the airfoil. This is expected to enhance the aerodynamic performance of the airfoil. Both configuration 1 and configuration 2 was simulated and the results compared with the base airfoil without any flow control mechanism. Based on the results, airfoil with configuration 1 performed better compared to the base airfoil. Airfoil with configuration 2, performed well but not better than the airfoil with configuration 1. Upon further analysis, key patterns emphasise airfoil with configuration 2 could perform better if the roughness element parameters further optimised. This airfoil to be used for wind turbine applications.</description><subject>Active control</subject><subject>Airfoils</subject><subject>Configuration management</subject><subject>Control methods</subject><subject>Flow control</subject><subject>Flow separation</subject><subject>Leading edges</subject><subject>Surface roughness</subject><subject>Trailing edge flaps</subject><subject>Wind turbines</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQLeeFObk6RNe1nGpsL8wE3wLmRtMjO6piarsH9vS2UiCF4lcJ73zckTBJeAbwCnaQQ85mGaZW9RxmgEEQaCaXIUjA6D48M9hdPgzPsNxglnDI8ClStny30tt6ZAeS2rvTceWY3yYmc-FVo6aSpTr8NpuVZoVsnGI1mX6Fl6388XrdOyUOjFtuv3WvkuW6PHfJIjxoCg3DhtTXUenGhZeXXxfY6D19l0ObkL50-395N8HhYM811IEyAZ7TZLVkSWmnNIqFI8XoEEDsBgRVZYZxwK4AUhOtaUAeNUFzGhACkdB1dDb-PsR6v8Tmxs67pfeUHihKS0eyHrqGSgCme9d0qLxpmtdHsBWPRKRW9L9OZEp1SAGJR2weshaGzz0_ywmP7CRFPqDiV_oP_0fwEyt4MF</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Manickam, Thanesh A/L</creator><creator>Roy, Sukanta</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201001</creationdate><title>Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil</title><author>Manickam, Thanesh A/L ; Roy, Sukanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3612936746b2adf77163ee75b1a171141b2b0f971c17c22f5f341473fc5231183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Airfoils</topic><topic>Configuration management</topic><topic>Control methods</topic><topic>Flow control</topic><topic>Flow separation</topic><topic>Leading edges</topic><topic>Surface roughness</topic><topic>Trailing edge flaps</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manickam, Thanesh A/L</creatorcontrib><creatorcontrib>Roy, Sukanta</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manickam, Thanesh A/L</au><au>Roy, Sukanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>943</volume><issue>1</issue><spage>12036</spage><pages>12036-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The focus of this study is to understand the effect of the flow control mechanism on NACA 4412 airfoil. Two configuration of flow control method is used in this investigation. The first configuration is, airfoil with only the trailing-edge flap. This is the active flow control method. The trailing-edge flap can be deflected to various angle accordingly. The second configuration is a combination of, active trailing-edge flap with a passive surface roughness at the leading-edge of the airfoil. The surface roughness is expected to reduce the flow separation at the leading-edge of the airfoil. This is expected to enhance the aerodynamic performance of the airfoil. Both configuration 1 and configuration 2 was simulated and the results compared with the base airfoil without any flow control mechanism. Based on the results, airfoil with configuration 1 performed better compared to the base airfoil. Airfoil with configuration 2, performed well but not better than the airfoil with configuration 1. Upon further analysis, key patterns emphasise airfoil with configuration 2 could perform better if the roughness element parameters further optimised. This airfoil to be used for wind turbine applications.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/943/1/012036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-10, Vol.943 (1), p.12036 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562833619 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Active control Airfoils Configuration management Control methods Flow control Flow separation Leading edges Surface roughness Trailing edge flaps Wind turbines |
title | Aerodynamic Analysis of Active Trailing-Edge Flaps and Passive Surface Roughness on NACA 4412 Airfoil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20Analysis%20of%20Active%20Trailing-Edge%20Flaps%20and%20Passive%20Surface%20Roughness%20on%20NACA%204412%20Airfoil&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Manickam,%20Thanesh%20A/L&rft.date=2020-10-01&rft.volume=943&rft.issue=1&rft.spage=12036&rft.pages=12036-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/943/1/012036&rft_dat=%3Cproquest_iop_j%3E2562833619%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562833619&rft_id=info:pmid/&rfr_iscdi=true |