Neural network analysis for the solidification scheme of the recycled metal casting

The use of recycled materials as one of the great results for the industrial raw materials shortage may face serious problems during the mold casting process. This paper researches the difference in solidification step between the edges and the center of the aluminum recycled cast. The implementatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2020-09, Vol.916 (1), p.12003
Hauptverfasser: Askar, A J, Al-Turfi, M N, Ibrahim, A J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12003
container_title IOP conference series. Materials Science and Engineering
container_volume 916
creator Askar, A J
Al-Turfi, M N
Ibrahim, A J
description The use of recycled materials as one of the great results for the industrial raw materials shortage may face serious problems during the mold casting process. This paper researches the difference in solidification step between the edges and the center of the aluminum recycled cast. The implementation of such research passes through two verification steps; the removal of the chemical dyes and then to melt the recycled aluminum cans in a ceramic container in order to produce the metallic 60 x 13cm mold. Six thermocouples are inserted on the casting edges and the center and liked directly to a computer system in order to simultaneously record the temperature readings from the start of the cooling/solidification process. The Artificial Neural Network ANN approach is applied to the recorded data via the utilization of the software MATLAB in order to analyze the cooling curves and determine the mathematical representation of the solidification layers through the casting. The interior layers microstructure is examined via SPECTROPORT mobile metal analyzer so as to detect the solidification trend through the examined ingots. The edges of the casting are shown to solidify more quickly than the central region and also it is demonstrated via the microstructural samples that the boundaries are more clear in the center than these at the edges.
doi_str_mv 10.1088/1757-899X/916/1/012003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562749418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562749418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-76762139e05e0db21ae9a7895ce2e25f3eb3ed2dd5754bd21159f17794ec52e83</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQLeeDObpE3TXMrwC6ZeTMG7kCUnLrNratIh-_e2ViaC4NU5cJ73hfMkySnBFwSXZUo445NSiJdUkCIlKSYU42wvGe0O-7u9JIfJUYwrjAue53iUzB9gE1SFamg_fHhDqlbVNrqIrA-oXQKKvnLGWadV63yNol7CGpC3X8cAeqsrMGgNbVeiVWxd_XqcHFhVRTj5nuPk-frqaXo7mT3e3E0vZxOdsbyd8IIXlGQCMANsFpQoEIqXgmmgQJnNYJGBocYwzvKFoYQwYQnnIgfNKJTZODkbepvg3zcQW7nym9A9ECVlBeW5yElPFQOlg48xgJVNcGsVtpJg2QuUvRvZe5KdQEnkILALng9B55uf5vv51S9MNsZ2KP0D_af_E21ygBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562749418</pqid></control><display><type>article</type><title>Neural network analysis for the solidification scheme of the recycled metal casting</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Askar, A J ; Al-Turfi, M N ; Ibrahim, A J</creator><creatorcontrib>Askar, A J ; Al-Turfi, M N ; Ibrahim, A J</creatorcontrib><description>The use of recycled materials as one of the great results for the industrial raw materials shortage may face serious problems during the mold casting process. This paper researches the difference in solidification step between the edges and the center of the aluminum recycled cast. The implementation of such research passes through two verification steps; the removal of the chemical dyes and then to melt the recycled aluminum cans in a ceramic container in order to produce the metallic 60 x 13cm mold. Six thermocouples are inserted on the casting edges and the center and liked directly to a computer system in order to simultaneously record the temperature readings from the start of the cooling/solidification process. The Artificial Neural Network ANN approach is applied to the recorded data via the utilization of the software MATLAB in order to analyze the cooling curves and determine the mathematical representation of the solidification layers through the casting. The interior layers microstructure is examined via SPECTROPORT mobile metal analyzer so as to detect the solidification trend through the examined ingots. The edges of the casting are shown to solidify more quickly than the central region and also it is demonstrated via the microstructural samples that the boundaries are more clear in the center than these at the edges.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/916/1/012003</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Artificial neural networks ; Casting ; Casting inserts ; Ceramic molds ; Cooling curves ; Ingot casting ; Microstructure ; Network analysis ; Neural networks ; Raw materials ; Recycled materials ; Solidification ; Thermocouples</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-09, Vol.916 (1), p.12003</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-76762139e05e0db21ae9a7895ce2e25f3eb3ed2dd5754bd21159f17794ec52e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/916/1/012003/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Askar, A J</creatorcontrib><creatorcontrib>Al-Turfi, M N</creatorcontrib><creatorcontrib>Ibrahim, A J</creatorcontrib><title>Neural network analysis for the solidification scheme of the recycled metal casting</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The use of recycled materials as one of the great results for the industrial raw materials shortage may face serious problems during the mold casting process. This paper researches the difference in solidification step between the edges and the center of the aluminum recycled cast. The implementation of such research passes through two verification steps; the removal of the chemical dyes and then to melt the recycled aluminum cans in a ceramic container in order to produce the metallic 60 x 13cm mold. Six thermocouples are inserted on the casting edges and the center and liked directly to a computer system in order to simultaneously record the temperature readings from the start of the cooling/solidification process. The Artificial Neural Network ANN approach is applied to the recorded data via the utilization of the software MATLAB in order to analyze the cooling curves and determine the mathematical representation of the solidification layers through the casting. The interior layers microstructure is examined via SPECTROPORT mobile metal analyzer so as to detect the solidification trend through the examined ingots. The edges of the casting are shown to solidify more quickly than the central region and also it is demonstrated via the microstructural samples that the boundaries are more clear in the center than these at the edges.</description><subject>Aluminum</subject><subject>Artificial neural networks</subject><subject>Casting</subject><subject>Casting inserts</subject><subject>Ceramic molds</subject><subject>Cooling curves</subject><subject>Ingot casting</subject><subject>Microstructure</subject><subject>Network analysis</subject><subject>Neural networks</subject><subject>Raw materials</subject><subject>Recycled materials</subject><subject>Solidification</subject><subject>Thermocouples</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQLeeDObpE3TXMrwC6ZeTMG7kCUnLrNratIh-_e2ViaC4NU5cJ73hfMkySnBFwSXZUo445NSiJdUkCIlKSYU42wvGe0O-7u9JIfJUYwrjAue53iUzB9gE1SFamg_fHhDqlbVNrqIrA-oXQKKvnLGWadV63yNol7CGpC3X8cAeqsrMGgNbVeiVWxd_XqcHFhVRTj5nuPk-frqaXo7mT3e3E0vZxOdsbyd8IIXlGQCMANsFpQoEIqXgmmgQJnNYJGBocYwzvKFoYQwYQnnIgfNKJTZODkbepvg3zcQW7nym9A9ECVlBeW5yElPFQOlg48xgJVNcGsVtpJg2QuUvRvZe5KdQEnkILALng9B55uf5vv51S9MNsZ2KP0D_af_E21ygBk</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Askar, A J</creator><creator>Al-Turfi, M N</creator><creator>Ibrahim, A J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Neural network analysis for the solidification scheme of the recycled metal casting</title><author>Askar, A J ; Al-Turfi, M N ; Ibrahim, A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-76762139e05e0db21ae9a7895ce2e25f3eb3ed2dd5754bd21159f17794ec52e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Artificial neural networks</topic><topic>Casting</topic><topic>Casting inserts</topic><topic>Ceramic molds</topic><topic>Cooling curves</topic><topic>Ingot casting</topic><topic>Microstructure</topic><topic>Network analysis</topic><topic>Neural networks</topic><topic>Raw materials</topic><topic>Recycled materials</topic><topic>Solidification</topic><topic>Thermocouples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Askar, A J</creatorcontrib><creatorcontrib>Al-Turfi, M N</creatorcontrib><creatorcontrib>Ibrahim, A J</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Askar, A J</au><au>Al-Turfi, M N</au><au>Ibrahim, A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network analysis for the solidification scheme of the recycled metal casting</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>916</volume><issue>1</issue><spage>12003</spage><pages>12003-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The use of recycled materials as one of the great results for the industrial raw materials shortage may face serious problems during the mold casting process. This paper researches the difference in solidification step between the edges and the center of the aluminum recycled cast. The implementation of such research passes through two verification steps; the removal of the chemical dyes and then to melt the recycled aluminum cans in a ceramic container in order to produce the metallic 60 x 13cm mold. Six thermocouples are inserted on the casting edges and the center and liked directly to a computer system in order to simultaneously record the temperature readings from the start of the cooling/solidification process. The Artificial Neural Network ANN approach is applied to the recorded data via the utilization of the software MATLAB in order to analyze the cooling curves and determine the mathematical representation of the solidification layers through the casting. The interior layers microstructure is examined via SPECTROPORT mobile metal analyzer so as to detect the solidification trend through the examined ingots. The edges of the casting are shown to solidify more quickly than the central region and also it is demonstrated via the microstructural samples that the boundaries are more clear in the center than these at the edges.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/916/1/012003</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2020-09, Vol.916 (1), p.12003
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2562749418
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Aluminum
Artificial neural networks
Casting
Casting inserts
Ceramic molds
Cooling curves
Ingot casting
Microstructure
Network analysis
Neural networks
Raw materials
Recycled materials
Solidification
Thermocouples
title Neural network analysis for the solidification scheme of the recycled metal casting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20analysis%20for%20the%20solidification%20scheme%20of%20the%20recycled%20metal%20casting&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Askar,%20A%20J&rft.date=2020-09-01&rft.volume=916&rft.issue=1&rft.spage=12003&rft.pages=12003-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/916/1/012003&rft_dat=%3Cproquest_cross%3E2562749418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562749418&rft_id=info:pmid/&rfr_iscdi=true