Decreased lipid storage in juvenile Bering Sea crabs (Chionoecetes spp.) in a warm (2014) compared to a cold (2012) year on the southeastern Bering Sea

The decline of eastern Bering Sea snow ( Chionoecetes opilio ) and Tanner ( Chionoecetes bairdi ) crab has coincided with loss of spring sea ice extent and northward contraction of the ‘cold pool,’ a layer of cold ( 10 µm) such as diatoms was elevated in the colder year particularly over the central...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polar biology 2021-09, Vol.44 (9), p.1883-1901
Hauptverfasser: Copeman, Louise A., Ryer, Clifford H., Eisner, Lisa B., Nielsen, Jens M., Spencer, Mara L., Iseri, Paul J., Ottmar, Michele L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1901
container_issue 9
container_start_page 1883
container_title Polar biology
container_volume 44
creator Copeman, Louise A.
Ryer, Clifford H.
Eisner, Lisa B.
Nielsen, Jens M.
Spencer, Mara L.
Iseri, Paul J.
Ottmar, Michele L.
description The decline of eastern Bering Sea snow ( Chionoecetes opilio ) and Tanner ( Chionoecetes bairdi ) crab has coincided with loss of spring sea ice extent and northward contraction of the ‘cold pool,’ a layer of cold ( 10 µm) such as diatoms was elevated in the colder year particularly over the central middle shelf. During the cold year, crab storage of diatom-sourced fatty acids (16:1n-7 to 16:0, r 2  = 0.72) as well as a station-specific relationship between large size-fraction integrated chla and crab total fatty acids ( r 2  = 0.5) points to the potential importance of diatoms to juvenile crab nutrition. Our results suggest that continued warming and loss of sea ice across the Bering Sea may reduce juvenile crab lipid storage through both direct thermal effects as well as through the reduction of large-size phytoplankton delivered to the benthos.
doi_str_mv 10.1007/s00300-021-02926-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562652895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562652895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1726b85bc940caa244dfbe74968177e7934becab658b6cb61af65404692841243</originalsourceid><addsrcrecordid>eNp9UbtOwzAUtRBIlMIPMFliaYeUa8exkxHKU0JiAGbLcW7aVGkc7BTUL-F3SRskmBiuznBeujqEnDOYMQB1GQBigAg46y_jMoIDMmIi5hGHRB6SESjOIwESjslJCCsApqTIRuTrBq1HE7CgddVWBQ2d82aBtGroavOBTVUjvUZfNQv6goZab_JAJ_Nl5RqHFjsMNLTtbLozGPpp_JpOODAxpdatW-P74M71jHV1sWf4lG7ReOoa2i2RBrfpwYQOffOn6JQclaYOePaDY_J2d_s6f4ienu8f51dPkY1Z1kVMcZmnSW4zAdYYLkRR5qhEJlOmFKosFjlak8skzaXNJTOlTAQImfFUMC7iMbkYclvv3jcYOr1yG9_0lZonksuEp1nSq_igst6F4LHUra_Wxm81A70bQA8D6H4AvR9AQ2-KB1Nod1-h_43-x_UNOmGGCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562652895</pqid></control><display><type>article</type><title>Decreased lipid storage in juvenile Bering Sea crabs (Chionoecetes spp.) in a warm (2014) compared to a cold (2012) year on the southeastern Bering Sea</title><source>SpringerNature Journals</source><creator>Copeman, Louise A. ; Ryer, Clifford H. ; Eisner, Lisa B. ; Nielsen, Jens M. ; Spencer, Mara L. ; Iseri, Paul J. ; Ottmar, Michele L.</creator><creatorcontrib>Copeman, Louise A. ; Ryer, Clifford H. ; Eisner, Lisa B. ; Nielsen, Jens M. ; Spencer, Mara L. ; Iseri, Paul J. ; Ottmar, Michele L.</creatorcontrib><description>The decline of eastern Bering Sea snow ( Chionoecetes opilio ) and Tanner ( Chionoecetes bairdi ) crab has coincided with loss of spring sea ice extent and northward contraction of the ‘cold pool,’ a layer of cold (&lt; 2 °C) summer bottom water. We measured temperature-associated growth and lipid storage of lab-reared Tanner crab, as well as the fatty acid content of field-collected juvenile Chionoecetes spp. Field collections occurred during a cold, high sea ice year (2012) and a warm, low ice year (2014), representative of cold and warm climate stanzas in the southeastern Bering Sea. Lab-reared Tanner crab maintained the lowest growth rates but highest lipids under cold conditions (2 °C). In the field, crabs contained higher fatty acids per wet weight (mg g −1 ) during 2012 than during 2014. Water column-integrated chlorophyll a (chla, an indicator of phytoplankton biomass) from large particles (&gt; 10 µm) such as diatoms was elevated in the colder year particularly over the central middle shelf. During the cold year, crab storage of diatom-sourced fatty acids (16:1n-7 to 16:0, r 2  = 0.72) as well as a station-specific relationship between large size-fraction integrated chla and crab total fatty acids ( r 2  = 0.5) points to the potential importance of diatoms to juvenile crab nutrition. Our results suggest that continued warming and loss of sea ice across the Bering Sea may reduce juvenile crab lipid storage through both direct thermal effects as well as through the reduction of large-size phytoplankton delivered to the benthos.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-021-02926-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bacillariophyceae ; Benthos ; Biomedical and Life Sciences ; Bottom water ; Chionoecetes ; Chionoecetes bairdi ; Chlorophyll ; Chlorophyll a ; Cold ; Cold storage ; Collections ; Contraction ; Crustaceans ; Decapoda ; Diatoms ; Ecology ; Fatty acids ; Growth rate ; High seas ; Life Sciences ; Lipids ; Marine crustaceans ; Marine microorganisms ; Microbiology ; Nutrition ; Oceanography ; Original Paper ; Phytoplankton ; Plant Sciences ; Sea ice ; Temperature effects ; Water circulation ; Water column ; Wet weight ; Zoology</subject><ispartof>Polar biology, 2021-09, Vol.44 (9), p.1883-1901</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1726b85bc940caa244dfbe74968177e7934becab658b6cb61af65404692841243</citedby><cites>FETCH-LOGICAL-c319t-1726b85bc940caa244dfbe74968177e7934becab658b6cb61af65404692841243</cites><orcidid>0000-0002-8851-7586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00300-021-02926-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00300-021-02926-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Copeman, Louise A.</creatorcontrib><creatorcontrib>Ryer, Clifford H.</creatorcontrib><creatorcontrib>Eisner, Lisa B.</creatorcontrib><creatorcontrib>Nielsen, Jens M.</creatorcontrib><creatorcontrib>Spencer, Mara L.</creatorcontrib><creatorcontrib>Iseri, Paul J.</creatorcontrib><creatorcontrib>Ottmar, Michele L.</creatorcontrib><title>Decreased lipid storage in juvenile Bering Sea crabs (Chionoecetes spp.) in a warm (2014) compared to a cold (2012) year on the southeastern Bering Sea</title><title>Polar biology</title><addtitle>Polar Biol</addtitle><description>The decline of eastern Bering Sea snow ( Chionoecetes opilio ) and Tanner ( Chionoecetes bairdi ) crab has coincided with loss of spring sea ice extent and northward contraction of the ‘cold pool,’ a layer of cold (&lt; 2 °C) summer bottom water. We measured temperature-associated growth and lipid storage of lab-reared Tanner crab, as well as the fatty acid content of field-collected juvenile Chionoecetes spp. Field collections occurred during a cold, high sea ice year (2012) and a warm, low ice year (2014), representative of cold and warm climate stanzas in the southeastern Bering Sea. Lab-reared Tanner crab maintained the lowest growth rates but highest lipids under cold conditions (2 °C). In the field, crabs contained higher fatty acids per wet weight (mg g −1 ) during 2012 than during 2014. Water column-integrated chlorophyll a (chla, an indicator of phytoplankton biomass) from large particles (&gt; 10 µm) such as diatoms was elevated in the colder year particularly over the central middle shelf. During the cold year, crab storage of diatom-sourced fatty acids (16:1n-7 to 16:0, r 2  = 0.72) as well as a station-specific relationship between large size-fraction integrated chla and crab total fatty acids ( r 2  = 0.5) points to the potential importance of diatoms to juvenile crab nutrition. Our results suggest that continued warming and loss of sea ice across the Bering Sea may reduce juvenile crab lipid storage through both direct thermal effects as well as through the reduction of large-size phytoplankton delivered to the benthos.</description><subject>Bacillariophyceae</subject><subject>Benthos</subject><subject>Biomedical and Life Sciences</subject><subject>Bottom water</subject><subject>Chionoecetes</subject><subject>Chionoecetes bairdi</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Cold</subject><subject>Cold storage</subject><subject>Collections</subject><subject>Contraction</subject><subject>Crustaceans</subject><subject>Decapoda</subject><subject>Diatoms</subject><subject>Ecology</subject><subject>Fatty acids</subject><subject>Growth rate</subject><subject>High seas</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Marine crustaceans</subject><subject>Marine microorganisms</subject><subject>Microbiology</subject><subject>Nutrition</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Phytoplankton</subject><subject>Plant Sciences</subject><subject>Sea ice</subject><subject>Temperature effects</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Wet weight</subject><subject>Zoology</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UbtOwzAUtRBIlMIPMFliaYeUa8exkxHKU0JiAGbLcW7aVGkc7BTUL-F3SRskmBiuznBeujqEnDOYMQB1GQBigAg46y_jMoIDMmIi5hGHRB6SESjOIwESjslJCCsApqTIRuTrBq1HE7CgddVWBQ2d82aBtGroavOBTVUjvUZfNQv6goZab_JAJ_Nl5RqHFjsMNLTtbLozGPpp_JpOODAxpdatW-P74M71jHV1sWf4lG7ReOoa2i2RBrfpwYQOffOn6JQclaYOePaDY_J2d_s6f4ienu8f51dPkY1Z1kVMcZmnSW4zAdYYLkRR5qhEJlOmFKosFjlak8skzaXNJTOlTAQImfFUMC7iMbkYclvv3jcYOr1yG9_0lZonksuEp1nSq_igst6F4LHUra_Wxm81A70bQA8D6H4AvR9AQ2-KB1Nod1-h_43-x_UNOmGGCg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Copeman, Louise A.</creator><creator>Ryer, Clifford H.</creator><creator>Eisner, Lisa B.</creator><creator>Nielsen, Jens M.</creator><creator>Spencer, Mara L.</creator><creator>Iseri, Paul J.</creator><creator>Ottmar, Michele L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8851-7586</orcidid></search><sort><creationdate>20210901</creationdate><title>Decreased lipid storage in juvenile Bering Sea crabs (Chionoecetes spp.) in a warm (2014) compared to a cold (2012) year on the southeastern Bering Sea</title><author>Copeman, Louise A. ; Ryer, Clifford H. ; Eisner, Lisa B. ; Nielsen, Jens M. ; Spencer, Mara L. ; Iseri, Paul J. ; Ottmar, Michele L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1726b85bc940caa244dfbe74968177e7934becab658b6cb61af65404692841243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacillariophyceae</topic><topic>Benthos</topic><topic>Biomedical and Life Sciences</topic><topic>Bottom water</topic><topic>Chionoecetes</topic><topic>Chionoecetes bairdi</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Cold</topic><topic>Cold storage</topic><topic>Collections</topic><topic>Contraction</topic><topic>Crustaceans</topic><topic>Decapoda</topic><topic>Diatoms</topic><topic>Ecology</topic><topic>Fatty acids</topic><topic>Growth rate</topic><topic>High seas</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Marine crustaceans</topic><topic>Marine microorganisms</topic><topic>Microbiology</topic><topic>Nutrition</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Phytoplankton</topic><topic>Plant Sciences</topic><topic>Sea ice</topic><topic>Temperature effects</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Wet weight</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Copeman, Louise A.</creatorcontrib><creatorcontrib>Ryer, Clifford H.</creatorcontrib><creatorcontrib>Eisner, Lisa B.</creatorcontrib><creatorcontrib>Nielsen, Jens M.</creatorcontrib><creatorcontrib>Spencer, Mara L.</creatorcontrib><creatorcontrib>Iseri, Paul J.</creatorcontrib><creatorcontrib>Ottmar, Michele L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Copeman, Louise A.</au><au>Ryer, Clifford H.</au><au>Eisner, Lisa B.</au><au>Nielsen, Jens M.</au><au>Spencer, Mara L.</au><au>Iseri, Paul J.</au><au>Ottmar, Michele L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decreased lipid storage in juvenile Bering Sea crabs (Chionoecetes spp.) in a warm (2014) compared to a cold (2012) year on the southeastern Bering Sea</atitle><jtitle>Polar biology</jtitle><stitle>Polar Biol</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>44</volume><issue>9</issue><spage>1883</spage><epage>1901</epage><pages>1883-1901</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><abstract>The decline of eastern Bering Sea snow ( Chionoecetes opilio ) and Tanner ( Chionoecetes bairdi ) crab has coincided with loss of spring sea ice extent and northward contraction of the ‘cold pool,’ a layer of cold (&lt; 2 °C) summer bottom water. We measured temperature-associated growth and lipid storage of lab-reared Tanner crab, as well as the fatty acid content of field-collected juvenile Chionoecetes spp. Field collections occurred during a cold, high sea ice year (2012) and a warm, low ice year (2014), representative of cold and warm climate stanzas in the southeastern Bering Sea. Lab-reared Tanner crab maintained the lowest growth rates but highest lipids under cold conditions (2 °C). In the field, crabs contained higher fatty acids per wet weight (mg g −1 ) during 2012 than during 2014. Water column-integrated chlorophyll a (chla, an indicator of phytoplankton biomass) from large particles (&gt; 10 µm) such as diatoms was elevated in the colder year particularly over the central middle shelf. During the cold year, crab storage of diatom-sourced fatty acids (16:1n-7 to 16:0, r 2  = 0.72) as well as a station-specific relationship between large size-fraction integrated chla and crab total fatty acids ( r 2  = 0.5) points to the potential importance of diatoms to juvenile crab nutrition. Our results suggest that continued warming and loss of sea ice across the Bering Sea may reduce juvenile crab lipid storage through both direct thermal effects as well as through the reduction of large-size phytoplankton delivered to the benthos.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00300-021-02926-0</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8851-7586</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0722-4060
ispartof Polar biology, 2021-09, Vol.44 (9), p.1883-1901
issn 0722-4060
1432-2056
language eng
recordid cdi_proquest_journals_2562652895
source SpringerNature Journals
subjects Bacillariophyceae
Benthos
Biomedical and Life Sciences
Bottom water
Chionoecetes
Chionoecetes bairdi
Chlorophyll
Chlorophyll a
Cold
Cold storage
Collections
Contraction
Crustaceans
Decapoda
Diatoms
Ecology
Fatty acids
Growth rate
High seas
Life Sciences
Lipids
Marine crustaceans
Marine microorganisms
Microbiology
Nutrition
Oceanography
Original Paper
Phytoplankton
Plant Sciences
Sea ice
Temperature effects
Water circulation
Water column
Wet weight
Zoology
title Decreased lipid storage in juvenile Bering Sea crabs (Chionoecetes spp.) in a warm (2014) compared to a cold (2012) year on the southeastern Bering Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decreased%20lipid%20storage%20in%20juvenile%20Bering%20Sea%20crabs%20(Chionoecetes%20spp.)%20in%20a%20warm%20(2014)%20compared%20to%20a%20cold%20(2012)%20year%20on%20the%20southeastern%20Bering%20Sea&rft.jtitle=Polar%20biology&rft.au=Copeman,%20Louise%20A.&rft.date=2021-09-01&rft.volume=44&rft.issue=9&rft.spage=1883&rft.epage=1901&rft.pages=1883-1901&rft.issn=0722-4060&rft.eissn=1432-2056&rft_id=info:doi/10.1007/s00300-021-02926-0&rft_dat=%3Cproquest_cross%3E2562652895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562652895&rft_id=info:pmid/&rfr_iscdi=true