Collision rates of permeable particles in creeping flows

Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-08, Vol.33 (8)
Hauptverfasser: Reboucas, Rodrigo B., Loewenberg, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Reboucas, Rodrigo B.
Loewenberg, Michael
description Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime K = k / a 2 ≪ 1, where k = 1 2 ( k 1 + k 2 ) is the mean permeability and a = a 1 a 2 / ( a 1 + a 2 ) is the reduced radius; ai, ki (i = 1, 2), respectively, is the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for permeable particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility functions. Collision rates in shear flow vanish below a critical value of the permeability parameter K * that increases with diminishing size ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness δa is also analyzed. The formulas for the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four aggregation mechanisms and a wide range of size ratios using an equivalent roughness δ = 0.72 K 2 / 5.
doi_str_mv 10.1063/5.0060018
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2562633322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562633322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-84db26b68679f3db079e8aec3ad70132064b67b382386e6f5d78cd61f523b3d33</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTdY8KSwdZLpTrJHKVaFghc9hySbSMp2d022iG_vlvbsaYbhY4b5GbvlsOBA-FgtAAiAqzM246DqUhLR-aGXUBIhv2RXOW8BAGtBM6ZWfdvGHPuuSGb0uehDMfi088a2vhhMGqNrp3HsCpe8H2L3VYS2_8nX7CKYNvubU52zz_Xzx-q13Ly_vK2eNqUTtRhLtWysIEuKZB2wsSBrr4x3aBoJHAXQ0pK0qAQq8hSqRirXEA-VQIsN4pzdHfcOqf_e-zzqbb9P3XRSi4oEIaIQk7o_Kpf6nJMPekhxZ9Kv5qAPwehKn4KZ7MPRZhdHM06v_4P_ANJbYNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562633322</pqid></control><display><type>article</type><title>Collision rates of permeable particles in creeping flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Reboucas, Rodrigo B. ; Loewenberg, Michael</creator><creatorcontrib>Reboucas, Rodrigo B. ; Loewenberg, Michael</creatorcontrib><description>Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime K = k / a 2 ≪ 1, where k = 1 2 ( k 1 + k 2 ) is the mean permeability and a = a 1 a 2 / ( a 1 + a 2 ) is the reduced radius; ai, ki (i = 1, 2), respectively, is the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for permeable particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility functions. Collision rates in shear flow vanish below a critical value of the permeability parameter K * that increases with diminishing size ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness δa is also analyzed. The formulas for the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four aggregation mechanisms and a wide range of size ratios using an equivalent roughness δ = 0.72 K 2 / 5.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0060018</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic methods ; Boundary conditions ; Brownian motion ; Collision dynamics ; Collision rates ; Computational fluid dynamics ; Darcys law ; Fluid dynamics ; Fluid flow ; Mathematical analysis ; Parameters ; Permeability ; Physics ; Quadratures ; Shear flow ; Speed limits ; Surface roughness</subject><ispartof>Physics of fluids (1994), 2021-08, Vol.33 (8)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-84db26b68679f3db079e8aec3ad70132064b67b382386e6f5d78cd61f523b3d33</citedby><cites>FETCH-LOGICAL-c292t-84db26b68679f3db079e8aec3ad70132064b67b382386e6f5d78cd61f523b3d33</cites><orcidid>0000-0001-8982-3553 ; 0000-0003-1735-0755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Reboucas, Rodrigo B.</creatorcontrib><creatorcontrib>Loewenberg, Michael</creatorcontrib><title>Collision rates of permeable particles in creeping flows</title><title>Physics of fluids (1994)</title><description>Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime K = k / a 2 ≪ 1, where k = 1 2 ( k 1 + k 2 ) is the mean permeability and a = a 1 a 2 / ( a 1 + a 2 ) is the reduced radius; ai, ki (i = 1, 2), respectively, is the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for permeable particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility functions. Collision rates in shear flow vanish below a critical value of the permeability parameter K * that increases with diminishing size ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness δa is also analyzed. The formulas for the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four aggregation mechanisms and a wide range of size ratios using an equivalent roughness δ = 0.72 K 2 / 5.</description><subject>Asymptotic methods</subject><subject>Boundary conditions</subject><subject>Brownian motion</subject><subject>Collision dynamics</subject><subject>Collision rates</subject><subject>Computational fluid dynamics</subject><subject>Darcys law</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Physics</subject><subject>Quadratures</subject><subject>Shear flow</subject><subject>Speed limits</subject><subject>Surface roughness</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTdY8KSwdZLpTrJHKVaFghc9hySbSMp2d022iG_vlvbsaYbhY4b5GbvlsOBA-FgtAAiAqzM246DqUhLR-aGXUBIhv2RXOW8BAGtBM6ZWfdvGHPuuSGb0uehDMfi088a2vhhMGqNrp3HsCpe8H2L3VYS2_8nX7CKYNvubU52zz_Xzx-q13Ly_vK2eNqUTtRhLtWysIEuKZB2wsSBrr4x3aBoJHAXQ0pK0qAQq8hSqRirXEA-VQIsN4pzdHfcOqf_e-zzqbb9P3XRSi4oEIaIQk7o_Kpf6nJMPekhxZ9Kv5qAPwehKn4KZ7MPRZhdHM06v_4P_ANJbYNQ</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Reboucas, Rodrigo B.</creator><creator>Loewenberg, Michael</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8982-3553</orcidid><orcidid>https://orcid.org/0000-0003-1735-0755</orcidid></search><sort><creationdate>202108</creationdate><title>Collision rates of permeable particles in creeping flows</title><author>Reboucas, Rodrigo B. ; Loewenberg, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-84db26b68679f3db079e8aec3ad70132064b67b382386e6f5d78cd61f523b3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Boundary conditions</topic><topic>Brownian motion</topic><topic>Collision dynamics</topic><topic>Collision rates</topic><topic>Computational fluid dynamics</topic><topic>Darcys law</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Physics</topic><topic>Quadratures</topic><topic>Shear flow</topic><topic>Speed limits</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reboucas, Rodrigo B.</creatorcontrib><creatorcontrib>Loewenberg, Michael</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reboucas, Rodrigo B.</au><au>Loewenberg, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collision rates of permeable particles in creeping flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-08</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime K = k / a 2 ≪ 1, where k = 1 2 ( k 1 + k 2 ) is the mean permeability and a = a 1 a 2 / ( a 1 + a 2 ) is the reduced radius; ai, ki (i = 1, 2), respectively, is the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for permeable particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility functions. Collision rates in shear flow vanish below a critical value of the permeability parameter K * that increases with diminishing size ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness δa is also analyzed. The formulas for the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four aggregation mechanisms and a wide range of size ratios using an equivalent roughness δ = 0.72 K 2 / 5.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0060018</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8982-3553</orcidid><orcidid>https://orcid.org/0000-0003-1735-0755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-08, Vol.33 (8)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2562633322
source AIP Journals Complete; Alma/SFX Local Collection
subjects Asymptotic methods
Boundary conditions
Brownian motion
Collision dynamics
Collision rates
Computational fluid dynamics
Darcys law
Fluid dynamics
Fluid flow
Mathematical analysis
Parameters
Permeability
Physics
Quadratures
Shear flow
Speed limits
Surface roughness
title Collision rates of permeable particles in creeping flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collision%20rates%20of%20permeable%20particles%20in%20creeping%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Reboucas,%20Rodrigo%20B.&rft.date=2021-08&rft.volume=33&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0060018&rft_dat=%3Cproquest_scita%3E2562633322%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562633322&rft_id=info:pmid/&rfr_iscdi=true