Collision rates of permeable particles in creeping flows
Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-08, Vol.33 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Reboucas, Rodrigo B. Loewenberg, Michael |
description | Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime
K
=
k
/
a
2
≪
1, where
k
=
1
2
(
k
1
+
k
2
) is the mean permeability and
a
=
a
1
a
2
/
(
a
1
+
a
2
) is the reduced radius; ai, ki (i = 1, 2), respectively, is the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for permeable particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility functions. Collision rates in shear flow vanish below a critical value of the permeability parameter
K
* that increases with diminishing size ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness δa is also analyzed. The formulas for the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four aggregation mechanisms and a wide range of size ratios using an equivalent roughness
δ
=
0.72
K
2
/
5. |
doi_str_mv | 10.1063/5.0060018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2562633322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562633322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-84db26b68679f3db079e8aec3ad70132064b67b382386e6f5d78cd61f523b3d33</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTdY8KSwdZLpTrJHKVaFghc9hySbSMp2d022iG_vlvbsaYbhY4b5GbvlsOBA-FgtAAiAqzM246DqUhLR-aGXUBIhv2RXOW8BAGtBM6ZWfdvGHPuuSGb0uehDMfi088a2vhhMGqNrp3HsCpe8H2L3VYS2_8nX7CKYNvubU52zz_Xzx-q13Ly_vK2eNqUTtRhLtWysIEuKZB2wsSBrr4x3aBoJHAXQ0pK0qAQq8hSqRirXEA-VQIsN4pzdHfcOqf_e-zzqbb9P3XRSi4oEIaIQk7o_Kpf6nJMPekhxZ9Kv5qAPwehKn4KZ7MPRZhdHM06v_4P_ANJbYNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562633322</pqid></control><display><type>article</type><title>Collision rates of permeable particles in creeping flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Reboucas, Rodrigo B. ; Loewenberg, Michael</creator><creatorcontrib>Reboucas, Rodrigo B. ; Loewenberg, Michael</creatorcontrib><description>Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime
K
=
k
/
a
2
≪
1, where
k
=
1
2
(
k
1
+
k
2
) is the mean permeability and
a
=
a
1
a
2
/
(
a
1
+
a
2
) is the reduced radius; ai, ki (i = 1, 2), respectively, is the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for permeable particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility functions. Collision rates in shear flow vanish below a critical value of the permeability parameter
K
* that increases with diminishing size ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness δa is also analyzed. The formulas for the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four aggregation mechanisms and a wide range of size ratios using an equivalent roughness
δ
=
0.72
K
2
/
5.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0060018</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic methods ; Boundary conditions ; Brownian motion ; Collision dynamics ; Collision rates ; Computational fluid dynamics ; Darcys law ; Fluid dynamics ; Fluid flow ; Mathematical analysis ; Parameters ; Permeability ; Physics ; Quadratures ; Shear flow ; Speed limits ; Surface roughness</subject><ispartof>Physics of fluids (1994), 2021-08, Vol.33 (8)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-84db26b68679f3db079e8aec3ad70132064b67b382386e6f5d78cd61f523b3d33</citedby><cites>FETCH-LOGICAL-c292t-84db26b68679f3db079e8aec3ad70132064b67b382386e6f5d78cd61f523b3d33</cites><orcidid>0000-0001-8982-3553 ; 0000-0003-1735-0755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Reboucas, Rodrigo B.</creatorcontrib><creatorcontrib>Loewenberg, Michael</creatorcontrib><title>Collision rates of permeable particles in creeping flows</title><title>Physics of fluids (1994)</title><description>Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime
K
=
k
/
a
2
≪
1, where
k
=
1
2
(
k
1
+
k
2
) is the mean permeability and
a
=
a
1
a
2
/
(
a
1
+
a
2
) is the reduced radius; ai, ki (i = 1, 2), respectively, is the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for permeable particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility functions. Collision rates in shear flow vanish below a critical value of the permeability parameter
K
* that increases with diminishing size ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness δa is also analyzed. The formulas for the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four aggregation mechanisms and a wide range of size ratios using an equivalent roughness
δ
=
0.72
K
2
/
5.</description><subject>Asymptotic methods</subject><subject>Boundary conditions</subject><subject>Brownian motion</subject><subject>Collision dynamics</subject><subject>Collision rates</subject><subject>Computational fluid dynamics</subject><subject>Darcys law</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Physics</subject><subject>Quadratures</subject><subject>Shear flow</subject><subject>Speed limits</subject><subject>Surface roughness</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTdY8KSwdZLpTrJHKVaFghc9hySbSMp2d022iG_vlvbsaYbhY4b5GbvlsOBA-FgtAAiAqzM246DqUhLR-aGXUBIhv2RXOW8BAGtBM6ZWfdvGHPuuSGb0uehDMfi088a2vhhMGqNrp3HsCpe8H2L3VYS2_8nX7CKYNvubU52zz_Xzx-q13Ly_vK2eNqUTtRhLtWysIEuKZB2wsSBrr4x3aBoJHAXQ0pK0qAQq8hSqRirXEA-VQIsN4pzdHfcOqf_e-zzqbb9P3XRSi4oEIaIQk7o_Kpf6nJMPekhxZ9Kv5qAPwehKn4KZ7MPRZhdHM06v_4P_ANJbYNQ</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Reboucas, Rodrigo B.</creator><creator>Loewenberg, Michael</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8982-3553</orcidid><orcidid>https://orcid.org/0000-0003-1735-0755</orcidid></search><sort><creationdate>202108</creationdate><title>Collision rates of permeable particles in creeping flows</title><author>Reboucas, Rodrigo B. ; Loewenberg, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-84db26b68679f3db079e8aec3ad70132064b67b382386e6f5d78cd61f523b3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Boundary conditions</topic><topic>Brownian motion</topic><topic>Collision dynamics</topic><topic>Collision rates</topic><topic>Computational fluid dynamics</topic><topic>Darcys law</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Physics</topic><topic>Quadratures</topic><topic>Shear flow</topic><topic>Speed limits</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reboucas, Rodrigo B.</creatorcontrib><creatorcontrib>Loewenberg, Michael</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reboucas, Rodrigo B.</au><au>Loewenberg, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collision rates of permeable particles in creeping flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-08</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Binary collision rates are calculated for the permeable particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow, and (iv) shear flow. Darcy's law is used to describe the flow inside the permeable particles, and no-slip boundary conditions are applied at particle surfaces. A leading-order asymptotic solution of the problem is developed for the weak permeability regime
K
=
k
/
a
2
≪
1, where
k
=
1
2
(
k
1
+
k
2
) is the mean permeability and
a
=
a
1
a
2
/
(
a
1
+
a
2
) is the reduced radius; ai, ki (i = 1, 2), respectively, is the radius and permeability of each particle. The resulting collision rates are given by the quadrature of the pair mobility functions for permeable particles in the near-contact lubrication region and size-ratio-dependent parameters obtained from standard hard-sphere pair mobility functions. Collision rates in shear flow vanish below a critical value of the permeability parameter
K
* that increases with diminishing size ratio. The analogous problem of pair collision rates of particles with small-amplitude surface roughness δa is also analyzed. The formulas for the collision rates of rough particles provide accurate analytical approximations for the collision rates of permeable particles for all four aggregation mechanisms and a wide range of size ratios using an equivalent roughness
δ
=
0.72
K
2
/
5.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0060018</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8982-3553</orcidid><orcidid>https://orcid.org/0000-0003-1735-0755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-08, Vol.33 (8) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2562633322 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Asymptotic methods Boundary conditions Brownian motion Collision dynamics Collision rates Computational fluid dynamics Darcys law Fluid dynamics Fluid flow Mathematical analysis Parameters Permeability Physics Quadratures Shear flow Speed limits Surface roughness |
title | Collision rates of permeable particles in creeping flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collision%20rates%20of%20permeable%20particles%20in%20creeping%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Reboucas,%20Rodrigo%20B.&rft.date=2021-08&rft.volume=33&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0060018&rft_dat=%3Cproquest_scita%3E2562633322%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562633322&rft_id=info:pmid/&rfr_iscdi=true |