The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms
In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under differ...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-07, Vol.892 (1), p.12053 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12053 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 892 |
creator | Du, Chengxin Wang, Zhifei Li, Fan Feng, Ruilong |
description | In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under different operation speeds, pipeline pressure and blocking ratios. Then, it takes 81 groups of data as training samples, establishing and training RBF neural network models, which are based on three different functions, and a linear neural network model as a comparison. Finally, it verifies those models with four groups of randomly selected verification data. The results show that the RBF network prediction model based on Newrbe function has the best prediction effect. It is superior to the other two RBF models in prediction accuracy. The prediction error of the linear neural network model for the maximum resistance of the train is large, and the prediction accuracy is far lower than that of the radial basis function neural network model. |
doi_str_mv | 10.1088/1757-899X/892/1/012053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562616108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562616108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2693-2697938c25b06c1ea41c0ccff26d82b3cf96496129227cbdf94ef60f7c011d1e3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYsouK5-BQl48bI2Sdu0Ocqy_oEVD67gLaTpxM3abWrSuvjtTamsCIKXmWHm997Ai6Jzgq8ILoqY5Fk-Kzh_iQtOYxJjQnGWHEST_eFwPxfkODrxfoMxy9MUTyK7WgNy4EE6tUa2QZ2Tphk2xneyUYBaB5VRnQk3q1Ftd-hDqr7fota0UJsGUCk9VIO2MlqDg6ZDDfRO1qF1O-vekKxfrTPdeutPoyMtaw9n330aPd8sVvO72fLx9n5-vZwpyngyCyXnSaFoVmKmCMiUKKyU1pRVBS0TpTlLOSOUU5qrstI8Bc2wzhUmpCKQTKOL0bd19r0H34mN7V0TXgqaMcoIC9kFio2UctZ7B1q0zmyl-xQEiyFcMeQmhgxDoYKIMdwgvByFxrY_zg9Pi1-YaCsdUPoH-o__F0BEiug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562616108</pqid></control><display><type>article</type><title>The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Du, Chengxin ; Wang, Zhifei ; Li, Fan ; Feng, Ruilong</creator><creatorcontrib>Du, Chengxin ; Wang, Zhifei ; Li, Fan ; Feng, Ruilong</creatorcontrib><description>In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under different operation speeds, pipeline pressure and blocking ratios. Then, it takes 81 groups of data as training samples, establishing and training RBF neural network models, which are based on three different functions, and a linear neural network model as a comparison. Finally, it verifies those models with four groups of randomly selected verification data. The results show that the RBF network prediction model based on Newrbe function has the best prediction effect. It is superior to the other two RBF models in prediction accuracy. The prediction error of the linear neural network model for the maximum resistance of the train is large, and the prediction accuracy is far lower than that of the radial basis function neural network model.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/892/1/012053</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Low vacuum ; Neural networks ; Prediction models ; Radial basis function ; Training</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-07, Vol.892 (1), p.12053</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2693-2697938c25b06c1ea41c0ccff26d82b3cf96496129227cbdf94ef60f7c011d1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/892/1/012053/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Du, Chengxin</creatorcontrib><creatorcontrib>Wang, Zhifei</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Feng, Ruilong</creatorcontrib><title>The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under different operation speeds, pipeline pressure and blocking ratios. Then, it takes 81 groups of data as training samples, establishing and training RBF neural network models, which are based on three different functions, and a linear neural network model as a comparison. Finally, it verifies those models with four groups of randomly selected verification data. The results show that the RBF network prediction model based on Newrbe function has the best prediction effect. It is superior to the other two RBF models in prediction accuracy. The prediction error of the linear neural network model for the maximum resistance of the train is large, and the prediction accuracy is far lower than that of the radial basis function neural network model.</description><subject>Algorithms</subject><subject>Low vacuum</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Radial basis function</subject><subject>Training</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9LxDAQxYsouK5-BQl48bI2Sdu0Ocqy_oEVD67gLaTpxM3abWrSuvjtTamsCIKXmWHm997Ai6Jzgq8ILoqY5Fk-Kzh_iQtOYxJjQnGWHEST_eFwPxfkODrxfoMxy9MUTyK7WgNy4EE6tUa2QZ2Tphk2xneyUYBaB5VRnQk3q1Ftd-hDqr7fota0UJsGUCk9VIO2MlqDg6ZDDfRO1qF1O-vekKxfrTPdeutPoyMtaw9n330aPd8sVvO72fLx9n5-vZwpyngyCyXnSaFoVmKmCMiUKKyU1pRVBS0TpTlLOSOUU5qrstI8Bc2wzhUmpCKQTKOL0bd19r0H34mN7V0TXgqaMcoIC9kFio2UctZ7B1q0zmyl-xQEiyFcMeQmhgxDoYKIMdwgvByFxrY_zg9Pi1-YaCsdUPoH-o__F0BEiug</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Du, Chengxin</creator><creator>Wang, Zhifei</creator><creator>Li, Fan</creator><creator>Feng, Ruilong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200701</creationdate><title>The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms</title><author>Du, Chengxin ; Wang, Zhifei ; Li, Fan ; Feng, Ruilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2693-2697938c25b06c1ea41c0ccff26d82b3cf96496129227cbdf94ef60f7c011d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Low vacuum</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Radial basis function</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Chengxin</creatorcontrib><creatorcontrib>Wang, Zhifei</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Feng, Ruilong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Chengxin</au><au>Wang, Zhifei</au><au>Li, Fan</au><au>Feng, Ruilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>892</volume><issue>1</issue><spage>12053</spage><pages>12053-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under different operation speeds, pipeline pressure and blocking ratios. Then, it takes 81 groups of data as training samples, establishing and training RBF neural network models, which are based on three different functions, and a linear neural network model as a comparison. Finally, it verifies those models with four groups of randomly selected verification data. The results show that the RBF network prediction model based on Newrbe function has the best prediction effect. It is superior to the other two RBF models in prediction accuracy. The prediction error of the linear neural network model for the maximum resistance of the train is large, and the prediction accuracy is far lower than that of the radial basis function neural network model.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/892/1/012053</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-07, Vol.892 (1), p.12053 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562616108 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Algorithms Low vacuum Neural networks Prediction models Radial basis function Training |
title | The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20research%20on%20train%20resistance%20prediction%20of%20low%20vacuum%20pipeline%20based%20on%20different%20neural%20network%20algorithms&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Du,%20Chengxin&rft.date=2020-07-01&rft.volume=892&rft.issue=1&rft.spage=12053&rft.pages=12053-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/892/1/012053&rft_dat=%3Cproquest_iop_j%3E2562616108%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562616108&rft_id=info:pmid/&rfr_iscdi=true |