The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms

In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2020-07, Vol.892 (1), p.12053
Hauptverfasser: Du, Chengxin, Wang, Zhifei, Li, Fan, Feng, Ruilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12053
container_title IOP conference series. Materials Science and Engineering
container_volume 892
creator Du, Chengxin
Wang, Zhifei
Li, Fan
Feng, Ruilong
description In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under different operation speeds, pipeline pressure and blocking ratios. Then, it takes 81 groups of data as training samples, establishing and training RBF neural network models, which are based on three different functions, and a linear neural network model as a comparison. Finally, it verifies those models with four groups of randomly selected verification data. The results show that the RBF network prediction model based on Newrbe function has the best prediction effect. It is superior to the other two RBF models in prediction accuracy. The prediction error of the linear neural network model for the maximum resistance of the train is large, and the prediction accuracy is far lower than that of the radial basis function neural network model.
doi_str_mv 10.1088/1757-899X/892/1/012053
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562616108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562616108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2693-2697938c25b06c1ea41c0ccff26d82b3cf96496129227cbdf94ef60f7c011d1e3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYsouK5-BQl48bI2Sdu0Ocqy_oEVD67gLaTpxM3abWrSuvjtTamsCIKXmWHm997Ai6Jzgq8ILoqY5Fk-Kzh_iQtOYxJjQnGWHEST_eFwPxfkODrxfoMxy9MUTyK7WgNy4EE6tUa2QZ2Tphk2xneyUYBaB5VRnQk3q1Ftd-hDqr7fota0UJsGUCk9VIO2MlqDg6ZDDfRO1qF1O-vekKxfrTPdeutPoyMtaw9n330aPd8sVvO72fLx9n5-vZwpyngyCyXnSaFoVmKmCMiUKKyU1pRVBS0TpTlLOSOUU5qrstI8Bc2wzhUmpCKQTKOL0bd19r0H34mN7V0TXgqaMcoIC9kFio2UctZ7B1q0zmyl-xQEiyFcMeQmhgxDoYKIMdwgvByFxrY_zg9Pi1-YaCsdUPoH-o__F0BEiug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562616108</pqid></control><display><type>article</type><title>The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Du, Chengxin ; Wang, Zhifei ; Li, Fan ; Feng, Ruilong</creator><creatorcontrib>Du, Chengxin ; Wang, Zhifei ; Li, Fan ; Feng, Ruilong</creatorcontrib><description>In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under different operation speeds, pipeline pressure and blocking ratios. Then, it takes 81 groups of data as training samples, establishing and training RBF neural network models, which are based on three different functions, and a linear neural network model as a comparison. Finally, it verifies those models with four groups of randomly selected verification data. The results show that the RBF network prediction model based on Newrbe function has the best prediction effect. It is superior to the other two RBF models in prediction accuracy. The prediction error of the linear neural network model for the maximum resistance of the train is large, and the prediction accuracy is far lower than that of the radial basis function neural network model.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/892/1/012053</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Low vacuum ; Neural networks ; Prediction models ; Radial basis function ; Training</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-07, Vol.892 (1), p.12053</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2693-2697938c25b06c1ea41c0ccff26d82b3cf96496129227cbdf94ef60f7c011d1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/892/1/012053/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Du, Chengxin</creatorcontrib><creatorcontrib>Wang, Zhifei</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Feng, Ruilong</creatorcontrib><title>The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under different operation speeds, pipeline pressure and blocking ratios. Then, it takes 81 groups of data as training samples, establishing and training RBF neural network models, which are based on three different functions, and a linear neural network model as a comparison. Finally, it verifies those models with four groups of randomly selected verification data. The results show that the RBF network prediction model based on Newrbe function has the best prediction effect. It is superior to the other two RBF models in prediction accuracy. The prediction error of the linear neural network model for the maximum resistance of the train is large, and the prediction accuracy is far lower than that of the radial basis function neural network model.</description><subject>Algorithms</subject><subject>Low vacuum</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Radial basis function</subject><subject>Training</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9LxDAQxYsouK5-BQl48bI2Sdu0Ocqy_oEVD67gLaTpxM3abWrSuvjtTamsCIKXmWHm997Ai6Jzgq8ILoqY5Fk-Kzh_iQtOYxJjQnGWHEST_eFwPxfkODrxfoMxy9MUTyK7WgNy4EE6tUa2QZ2Tphk2xneyUYBaB5VRnQk3q1Ftd-hDqr7fota0UJsGUCk9VIO2MlqDg6ZDDfRO1qF1O-vekKxfrTPdeutPoyMtaw9n330aPd8sVvO72fLx9n5-vZwpyngyCyXnSaFoVmKmCMiUKKyU1pRVBS0TpTlLOSOUU5qrstI8Bc2wzhUmpCKQTKOL0bd19r0H34mN7V0TXgqaMcoIC9kFio2UctZ7B1q0zmyl-xQEiyFcMeQmhgxDoYKIMdwgvByFxrY_zg9Pi1-YaCsdUPoH-o__F0BEiug</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Du, Chengxin</creator><creator>Wang, Zhifei</creator><creator>Li, Fan</creator><creator>Feng, Ruilong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200701</creationdate><title>The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms</title><author>Du, Chengxin ; Wang, Zhifei ; Li, Fan ; Feng, Ruilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2693-2697938c25b06c1ea41c0ccff26d82b3cf96496129227cbdf94ef60f7c011d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Low vacuum</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Radial basis function</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Chengxin</creatorcontrib><creatorcontrib>Wang, Zhifei</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Feng, Ruilong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Chengxin</au><au>Wang, Zhifei</au><au>Li, Fan</au><au>Feng, Ruilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>892</volume><issue>1</issue><spage>12053</spage><pages>12053-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>In order to obtain the maximum aerodynamic resistance of low-vacuum pipeline train under different working conditions, this paper uses different neural network algorithms to predict the maximum aerodynamic resistance. First, it calculates 85 groups of maximum resistance values of trains under different operation speeds, pipeline pressure and blocking ratios. Then, it takes 81 groups of data as training samples, establishing and training RBF neural network models, which are based on three different functions, and a linear neural network model as a comparison. Finally, it verifies those models with four groups of randomly selected verification data. The results show that the RBF network prediction model based on Newrbe function has the best prediction effect. It is superior to the other two RBF models in prediction accuracy. The prediction error of the linear neural network model for the maximum resistance of the train is large, and the prediction accuracy is far lower than that of the radial basis function neural network model.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/892/1/012053</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2020-07, Vol.892 (1), p.12053
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2562616108
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Algorithms
Low vacuum
Neural networks
Prediction models
Radial basis function
Training
title The research on train resistance prediction of low vacuum pipeline based on different neural network algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20research%20on%20train%20resistance%20prediction%20of%20low%20vacuum%20pipeline%20based%20on%20different%20neural%20network%20algorithms&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Du,%20Chengxin&rft.date=2020-07-01&rft.volume=892&rft.issue=1&rft.spage=12053&rft.pages=12053-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/892/1/012053&rft_dat=%3Cproquest_iop_j%3E2562616108%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562616108&rft_id=info:pmid/&rfr_iscdi=true