Torsional vibrations of a cylindrical shell in a linear viscoelastic medium
In this paper, we consider the natural vibrations of inhomogeneous mechanical systems, i.e., cylindrical bodies located in a deformable viscoelastic medium. The theory and methods for studying the natural vibrations of a cylindrical shell in a viscoelastic medium are constructed. The viscoelastic pr...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-07, Vol.883 (1), p.12190 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12190 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 883 |
creator | Safarov, I Teshaev, M Toshmatov, E Boltaev, Z Homidov, F |
description | In this paper, we consider the natural vibrations of inhomogeneous mechanical systems, i.e., cylindrical bodies located in a deformable viscoelastic medium. The theory and methods for studying the natural vibrations of a cylindrical shell in a viscoelastic medium are constructed. The viscoelastic properties of the medium are taken into account using the hereditary Boltzmann-Walter theory. For the statement of the problem, the general equation of the theory of viscoelasticity in the potentials of displacements in a cylindrical coordinate system is used. An algorithm has been developed to solve the tasks posed on a computer using the Bessel, Hankel, and Mueller and Gauss methods. The considered problems were reduced to finding complex natural frequencies for the system of equations of motion of a cylindrical shell in an infinite viscoelastic medium using radiation conditions. It is shown that the problem has a discrete complex spectrum. The eigen frequencies of oscillations of a low-contrast heterogeneity are found. Revealed that the imaginary part of the eigen frequencies is comparable with the real one, which can lead to aperiodic movements of the systems considered. |
doi_str_mv | 10.1088/1757-899X/883/1/012190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562595310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562595310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2890-f31ce452ebf90d2899c7db674f19c9e6e861448f92396f306e92b09957c6dbfc3</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxoMoOKf_ghR8rr2kbZp7lKFOHPgywbeQpglmtM1MNmH_vRmV-ejTHd9933H3I-SWwj0FIQra1E0uED8KIcqCFkAZRTgjs9Pg_NQLekmuYtwA8KaqYEZe1z5E50fVZ9-uDWqX-ph5m6lMH3o3dsHpNIufpu8zNyY5iUaF5I7am17FndPZYDq3H67JhVV9NDe_dU7enx7Xi2W-ent-WTyscs0EQm5Lqk1VM9NahC5JqJuuTfdYihoNN4LTqhIWWYnclsANshYQ60bzrrW6nJO7ae82-K-9iTu58fuQXoiS1ZzVWJcUkotPLh18jMFYuQ1uUOEgKcgjOHlkIo98ZAInqZzApSCbgs5v_zb_E_oBVMdv_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562595310</pqid></control><display><type>article</type><title>Torsional vibrations of a cylindrical shell in a linear viscoelastic medium</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Safarov, I ; Teshaev, M ; Toshmatov, E ; Boltaev, Z ; Homidov, F</creator><creatorcontrib>Safarov, I ; Teshaev, M ; Toshmatov, E ; Boltaev, Z ; Homidov, F</creatorcontrib><description>In this paper, we consider the natural vibrations of inhomogeneous mechanical systems, i.e., cylindrical bodies located in a deformable viscoelastic medium. The theory and methods for studying the natural vibrations of a cylindrical shell in a viscoelastic medium are constructed. The viscoelastic properties of the medium are taken into account using the hereditary Boltzmann-Walter theory. For the statement of the problem, the general equation of the theory of viscoelasticity in the potentials of displacements in a cylindrical coordinate system is used. An algorithm has been developed to solve the tasks posed on a computer using the Bessel, Hankel, and Mueller and Gauss methods. The considered problems were reduced to finding complex natural frequencies for the system of equations of motion of a cylindrical shell in an infinite viscoelastic medium using radiation conditions. It is shown that the problem has a discrete complex spectrum. The eigen frequencies of oscillations of a low-contrast heterogeneity are found. Revealed that the imaginary part of the eigen frequencies is comparable with the real one, which can lead to aperiodic movements of the systems considered.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/883/1/012190</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Cylindrical bodies ; Cylindrical coordinates ; Cylindrical shells ; Equations of motion ; Formability ; Heterogeneity ; Mechanical systems ; Resonant frequencies ; Viscoelasticity</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-07, Vol.883 (1), p.12190</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2890-f31ce452ebf90d2899c7db674f19c9e6e861448f92396f306e92b09957c6dbfc3</citedby><cites>FETCH-LOGICAL-c2890-f31ce452ebf90d2899c7db674f19c9e6e861448f92396f306e92b09957c6dbfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/883/1/012190/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27907,27908,38851,38873,53823,53850</link.rule.ids></links><search><creatorcontrib>Safarov, I</creatorcontrib><creatorcontrib>Teshaev, M</creatorcontrib><creatorcontrib>Toshmatov, E</creatorcontrib><creatorcontrib>Boltaev, Z</creatorcontrib><creatorcontrib>Homidov, F</creatorcontrib><title>Torsional vibrations of a cylindrical shell in a linear viscoelastic medium</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>In this paper, we consider the natural vibrations of inhomogeneous mechanical systems, i.e., cylindrical bodies located in a deformable viscoelastic medium. The theory and methods for studying the natural vibrations of a cylindrical shell in a viscoelastic medium are constructed. The viscoelastic properties of the medium are taken into account using the hereditary Boltzmann-Walter theory. For the statement of the problem, the general equation of the theory of viscoelasticity in the potentials of displacements in a cylindrical coordinate system is used. An algorithm has been developed to solve the tasks posed on a computer using the Bessel, Hankel, and Mueller and Gauss methods. The considered problems were reduced to finding complex natural frequencies for the system of equations of motion of a cylindrical shell in an infinite viscoelastic medium using radiation conditions. It is shown that the problem has a discrete complex spectrum. The eigen frequencies of oscillations of a low-contrast heterogeneity are found. Revealed that the imaginary part of the eigen frequencies is comparable with the real one, which can lead to aperiodic movements of the systems considered.</description><subject>Algorithms</subject><subject>Cylindrical bodies</subject><subject>Cylindrical coordinates</subject><subject>Cylindrical shells</subject><subject>Equations of motion</subject><subject>Formability</subject><subject>Heterogeneity</subject><subject>Mechanical systems</subject><subject>Resonant frequencies</subject><subject>Viscoelasticity</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNFLwzAQxoMoOKf_ghR8rr2kbZp7lKFOHPgywbeQpglmtM1MNmH_vRmV-ejTHd9933H3I-SWwj0FIQra1E0uED8KIcqCFkAZRTgjs9Pg_NQLekmuYtwA8KaqYEZe1z5E50fVZ9-uDWqX-ph5m6lMH3o3dsHpNIufpu8zNyY5iUaF5I7am17FndPZYDq3H67JhVV9NDe_dU7enx7Xi2W-ent-WTyscs0EQm5Lqk1VM9NahC5JqJuuTfdYihoNN4LTqhIWWYnclsANshYQ60bzrrW6nJO7ae82-K-9iTu58fuQXoiS1ZzVWJcUkotPLh18jMFYuQ1uUOEgKcgjOHlkIo98ZAInqZzApSCbgs5v_zb_E_oBVMdv_g</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Safarov, I</creator><creator>Teshaev, M</creator><creator>Toshmatov, E</creator><creator>Boltaev, Z</creator><creator>Homidov, F</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200701</creationdate><title>Torsional vibrations of a cylindrical shell in a linear viscoelastic medium</title><author>Safarov, I ; Teshaev, M ; Toshmatov, E ; Boltaev, Z ; Homidov, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2890-f31ce452ebf90d2899c7db674f19c9e6e861448f92396f306e92b09957c6dbfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cylindrical bodies</topic><topic>Cylindrical coordinates</topic><topic>Cylindrical shells</topic><topic>Equations of motion</topic><topic>Formability</topic><topic>Heterogeneity</topic><topic>Mechanical systems</topic><topic>Resonant frequencies</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safarov, I</creatorcontrib><creatorcontrib>Teshaev, M</creatorcontrib><creatorcontrib>Toshmatov, E</creatorcontrib><creatorcontrib>Boltaev, Z</creatorcontrib><creatorcontrib>Homidov, F</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safarov, I</au><au>Teshaev, M</au><au>Toshmatov, E</au><au>Boltaev, Z</au><au>Homidov, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Torsional vibrations of a cylindrical shell in a linear viscoelastic medium</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>883</volume><issue>1</issue><spage>12190</spage><pages>12190-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>In this paper, we consider the natural vibrations of inhomogeneous mechanical systems, i.e., cylindrical bodies located in a deformable viscoelastic medium. The theory and methods for studying the natural vibrations of a cylindrical shell in a viscoelastic medium are constructed. The viscoelastic properties of the medium are taken into account using the hereditary Boltzmann-Walter theory. For the statement of the problem, the general equation of the theory of viscoelasticity in the potentials of displacements in a cylindrical coordinate system is used. An algorithm has been developed to solve the tasks posed on a computer using the Bessel, Hankel, and Mueller and Gauss methods. The considered problems were reduced to finding complex natural frequencies for the system of equations of motion of a cylindrical shell in an infinite viscoelastic medium using radiation conditions. It is shown that the problem has a discrete complex spectrum. The eigen frequencies of oscillations of a low-contrast heterogeneity are found. Revealed that the imaginary part of the eigen frequencies is comparable with the real one, which can lead to aperiodic movements of the systems considered.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/883/1/012190</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-07, Vol.883 (1), p.12190 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562595310 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Algorithms Cylindrical bodies Cylindrical coordinates Cylindrical shells Equations of motion Formability Heterogeneity Mechanical systems Resonant frequencies Viscoelasticity |
title | Torsional vibrations of a cylindrical shell in a linear viscoelastic medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Torsional%20vibrations%20of%20a%20cylindrical%20shell%20in%20a%20linear%20viscoelastic%20medium&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Safarov,%20I&rft.date=2020-07-01&rft.volume=883&rft.issue=1&rft.spage=12190&rft.pages=12190-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/883/1/012190&rft_dat=%3Cproquest_cross%3E2562595310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562595310&rft_id=info:pmid/&rfr_iscdi=true |