Application of the information uncertainty measure when comparing planned and actual commercial losses of electricity
The paper considers methods for processing data on commercial losses in electric networks with subsequent analysis of the obtained results. The information processing tools included methods for determining the amount of divergence of electric power losses when comparing planned and actual data. Comp...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-05, Vol.862 (6), p.62019 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 62019 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 862 |
creator | Dulesova, N V Dulesov, A S Karandeev, D J Malykhina, A V |
description | The paper considers methods for processing data on commercial losses in electric networks with subsequent analysis of the obtained results. The information processing tools included methods for determining the amount of divergence of electric power losses when comparing planned and actual data. Comparing the planned and actual values of electric power losses, a method is proposed that in the classical theory of information is called "Kullback-Leibler divergence". The rationale for its use is based on the possibility of applying a measure of information uncertainty, where information entropy is taken as a measured value. Comparing the planned and actual values of electric power losses, discrepancies between these distributions are obtained based on the application of the Kullback-Leibler model. The obtained results not only confirmed the importance of the applicability of this method of information processing, but also allowed us to draw attention to the adequacy of the planned losses to the actual ones. |
doi_str_mv | 10.1088/1757-899X/862/6/062019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562528894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562528894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3229-91e3a3191051d92b20a47145d7b947790cc908674c29d579ec931cba2eddda7e3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BSm4cVObpI80y2EYHzDiQgV3IZPcOhnaJKYtMv_elsqIILgIueSec3Lvh9AlwTcEl2VCWM7ikvO3pCxoUiS4oJjwIzQ7NI4PdUlO0Vnb7jAuWJbhGeoX3tdGyc44G7kq6rYQGVu50ExPvVUQOmlst48akG0fIPrcgo2Ua7wMxr5HvpbWgo6kHY7qelmPzQaCMkNZu7aFdoyGGlQXjDLd_hydVLJu4eL7nqPX29XL8j5eP909LBfrWKWU8pgTSGVKOME50ZxuKJYZI1mu2YZnjHGsFMflsImiXOeMg-IpURtJQWstGaRzdDXl-uA-emg7sXN9sMOXguYFzWlZ8mxQFZNKhWHYAJXwwTQy7AXBYkQsRnpiJCkGxKIQE-LBSCejcf4n-V_T9R-mx-fVL5nwukq_AFwWjWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562528894</pqid></control><display><type>article</type><title>Application of the information uncertainty measure when comparing planned and actual commercial losses of electricity</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Dulesova, N V ; Dulesov, A S ; Karandeev, D J ; Malykhina, A V</creator><creatorcontrib>Dulesova, N V ; Dulesov, A S ; Karandeev, D J ; Malykhina, A V</creatorcontrib><description>The paper considers methods for processing data on commercial losses in electric networks with subsequent analysis of the obtained results. The information processing tools included methods for determining the amount of divergence of electric power losses when comparing planned and actual data. Comparing the planned and actual values of electric power losses, a method is proposed that in the classical theory of information is called "Kullback-Leibler divergence". The rationale for its use is based on the possibility of applying a measure of information uncertainty, where information entropy is taken as a measured value. Comparing the planned and actual values of electric power losses, discrepancies between these distributions are obtained based on the application of the Kullback-Leibler model. The obtained results not only confirmed the importance of the applicability of this method of information processing, but also allowed us to draw attention to the adequacy of the planned losses to the actual ones.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/862/6/062019</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Adequacy ; Data processing ; Electric power ; Electric power distribution ; Electric power loss ; Electrical networks ; Electricity distribution ; Entropy (Information theory) ; Information processing ; Uncertainty</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-05, Vol.862 (6), p.62019</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3229-91e3a3191051d92b20a47145d7b947790cc908674c29d579ec931cba2eddda7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/862/6/062019/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Dulesova, N V</creatorcontrib><creatorcontrib>Dulesov, A S</creatorcontrib><creatorcontrib>Karandeev, D J</creatorcontrib><creatorcontrib>Malykhina, A V</creatorcontrib><title>Application of the information uncertainty measure when comparing planned and actual commercial losses of electricity</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The paper considers methods for processing data on commercial losses in electric networks with subsequent analysis of the obtained results. The information processing tools included methods for determining the amount of divergence of electric power losses when comparing planned and actual data. Comparing the planned and actual values of electric power losses, a method is proposed that in the classical theory of information is called "Kullback-Leibler divergence". The rationale for its use is based on the possibility of applying a measure of information uncertainty, where information entropy is taken as a measured value. Comparing the planned and actual values of electric power losses, discrepancies between these distributions are obtained based on the application of the Kullback-Leibler model. The obtained results not only confirmed the importance of the applicability of this method of information processing, but also allowed us to draw attention to the adequacy of the planned losses to the actual ones.</description><subject>Adequacy</subject><subject>Data processing</subject><subject>Electric power</subject><subject>Electric power distribution</subject><subject>Electric power loss</subject><subject>Electrical networks</subject><subject>Electricity distribution</subject><subject>Entropy (Information theory)</subject><subject>Information processing</subject><subject>Uncertainty</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEtLxDAUhYMoOI7-BSm4cVObpI80y2EYHzDiQgV3IZPcOhnaJKYtMv_elsqIILgIueSec3Lvh9AlwTcEl2VCWM7ikvO3pCxoUiS4oJjwIzQ7NI4PdUlO0Vnb7jAuWJbhGeoX3tdGyc44G7kq6rYQGVu50ExPvVUQOmlst48akG0fIPrcgo2Ua7wMxr5HvpbWgo6kHY7qelmPzQaCMkNZu7aFdoyGGlQXjDLd_hydVLJu4eL7nqPX29XL8j5eP909LBfrWKWU8pgTSGVKOME50ZxuKJYZI1mu2YZnjHGsFMflsImiXOeMg-IpURtJQWstGaRzdDXl-uA-emg7sXN9sMOXguYFzWlZ8mxQFZNKhWHYAJXwwTQy7AXBYkQsRnpiJCkGxKIQE-LBSCejcf4n-V_T9R-mx-fVL5nwukq_AFwWjWw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Dulesova, N V</creator><creator>Dulesov, A S</creator><creator>Karandeev, D J</creator><creator>Malykhina, A V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200501</creationdate><title>Application of the information uncertainty measure when comparing planned and actual commercial losses of electricity</title><author>Dulesova, N V ; Dulesov, A S ; Karandeev, D J ; Malykhina, A V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3229-91e3a3191051d92b20a47145d7b947790cc908674c29d579ec931cba2eddda7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adequacy</topic><topic>Data processing</topic><topic>Electric power</topic><topic>Electric power distribution</topic><topic>Electric power loss</topic><topic>Electrical networks</topic><topic>Electricity distribution</topic><topic>Entropy (Information theory)</topic><topic>Information processing</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dulesova, N V</creatorcontrib><creatorcontrib>Dulesov, A S</creatorcontrib><creatorcontrib>Karandeev, D J</creatorcontrib><creatorcontrib>Malykhina, A V</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dulesova, N V</au><au>Dulesov, A S</au><au>Karandeev, D J</au><au>Malykhina, A V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the information uncertainty measure when comparing planned and actual commercial losses of electricity</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>862</volume><issue>6</issue><spage>62019</spage><pages>62019-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The paper considers methods for processing data on commercial losses in electric networks with subsequent analysis of the obtained results. The information processing tools included methods for determining the amount of divergence of electric power losses when comparing planned and actual data. Comparing the planned and actual values of electric power losses, a method is proposed that in the classical theory of information is called "Kullback-Leibler divergence". The rationale for its use is based on the possibility of applying a measure of information uncertainty, where information entropy is taken as a measured value. Comparing the planned and actual values of electric power losses, discrepancies between these distributions are obtained based on the application of the Kullback-Leibler model. The obtained results not only confirmed the importance of the applicability of this method of information processing, but also allowed us to draw attention to the adequacy of the planned losses to the actual ones.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/862/6/062019</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-05, Vol.862 (6), p.62019 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562528894 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Adequacy Data processing Electric power Electric power distribution Electric power loss Electrical networks Electricity distribution Entropy (Information theory) Information processing Uncertainty |
title | Application of the information uncertainty measure when comparing planned and actual commercial losses of electricity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20information%20uncertainty%20measure%20when%20comparing%20planned%20and%20actual%20commercial%20losses%20of%20electricity&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Dulesova,%20N%20V&rft.date=2020-05-01&rft.volume=862&rft.issue=6&rft.spage=62019&rft.pages=62019-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/862/6/062019&rft_dat=%3Cproquest_iop_j%3E2562528894%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562528894&rft_id=info:pmid/&rfr_iscdi=true |