Synaptic transistors with human brain-like fJ energy consumption via double oxide semiconductor engineering for neuromorphic electronics
Neuromorphic devices that mimic a human brain have attracted significant attention in the field of next-generation semiconductors. The human brain can efficiently process information with low power consumption. Several energy efficient artificial synapses have been reported; however, the energy cons...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-08, Vol.9 (32), p.10243-10253 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10253 |
---|---|
container_issue | 32 |
container_start_page | 10243 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 9 |
creator | Cho, Seong-In Jeon, Jae Bum Kim, Joo Hyung Lee, Seung Hee Jeong, Wooseok Kim, Jingyu Kim, Geunyoung Kim, Kyung Min Park, Sang-Hee Ko |
description | Neuromorphic devices that mimic a human brain have attracted significant attention in the field of next-generation semiconductors. The human brain can efficiently process information with low power consumption. Several energy efficient artificial synapses have been reported; however, the energy consumption of these synapses is significantly higher than that of the human brain (10 fJ). In this study, we propose the use of double oxide semiconductors for obtaining synaptic transistors with ultra-low energy consumption. The synaptic transistor comprising InZnO (IZO) and InGaZnO (IGZO) exhibits a high mobility and positive turn-on voltage, which are required for ultra-low energy consumption. SiO
2
deposited at 200 °C by plasma enhanced atomic layer deposition is used as an electric double layer gate insulator. The IZO/IGZO synaptic transistor consumed an ultra-low energy of 0.269 fJ (gate voltage: 3.5 V, 1 ms and drain voltage: 3 mV). Furthermore, the synaptic transistor exhibits various synaptic plasticity features under the brain-like energy conditions, including excitatory post-synaptic current, paired-pulse facilitation, potentiation, and depression. All of the operations of the devices were performed under ambient conditions (25 °C, humidity 50%), in the dark probe station. The IZO/IGZO synaptic transistor exhibits similar energy efficiency to a human brain, and this strategy is expected to be utilized for the fabrication of various ultra-low energy consuming synaptic transistors. |
doi_str_mv | 10.1039/D1TC01451J |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562464773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562464773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-277d3915f2c0663bbbc8965083f4b8c834bb04a253c0ad03a0fb7809b2299ecd3</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOOZe_AQB34Rq_jRp8yhTp2Pgg_O5JGm6ZbZJTVp138CPbWSi9-XeC79zDhwAzjG6woiK61u8niOcM7w8AhOCGMoKRvPjv5vwUzCLcYfSlJiXXEzA1_PeyX6wGg5Bumjj4EOEH3bYwu3YSQdVkNZlrX01sFlC40zY7KH2Lo5dknkH362EtR9Va6D_tLWB0XQ2AfWok1dSbKwzJli3gU36nRmD73zotynTtEYPwTur4xk4aWQbzex3T8HL_d16_pCtnhaP85tVpgkTQ0aKoqYCs4ZoxDlVSulScIZK2uSq1CXNlUK5JIxqJGtEJWpUUSKhCBHC6JpOwcXBtw_-bTRxqHZ-DC5FVoRxkvO8KGiiLg-UDj7GYJqqD7aTYV9hVP2UXf2XTb8B5MZ0og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562464773</pqid></control><display><type>article</type><title>Synaptic transistors with human brain-like fJ energy consumption via double oxide semiconductor engineering for neuromorphic electronics</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Cho, Seong-In ; Jeon, Jae Bum ; Kim, Joo Hyung ; Lee, Seung Hee ; Jeong, Wooseok ; Kim, Jingyu ; Kim, Geunyoung ; Kim, Kyung Min ; Park, Sang-Hee Ko</creator><creatorcontrib>Cho, Seong-In ; Jeon, Jae Bum ; Kim, Joo Hyung ; Lee, Seung Hee ; Jeong, Wooseok ; Kim, Jingyu ; Kim, Geunyoung ; Kim, Kyung Min ; Park, Sang-Hee Ko</creatorcontrib><description>Neuromorphic devices that mimic a human brain have attracted significant attention in the field of next-generation semiconductors. The human brain can efficiently process information with low power consumption. Several energy efficient artificial synapses have been reported; however, the energy consumption of these synapses is significantly higher than that of the human brain (10 fJ). In this study, we propose the use of double oxide semiconductors for obtaining synaptic transistors with ultra-low energy consumption. The synaptic transistor comprising InZnO (IZO) and InGaZnO (IGZO) exhibits a high mobility and positive turn-on voltage, which are required for ultra-low energy consumption. SiO
2
deposited at 200 °C by plasma enhanced atomic layer deposition is used as an electric double layer gate insulator. The IZO/IGZO synaptic transistor consumed an ultra-low energy of 0.269 fJ (gate voltage: 3.5 V, 1 ms and drain voltage: 3 mV). Furthermore, the synaptic transistor exhibits various synaptic plasticity features under the brain-like energy conditions, including excitatory post-synaptic current, paired-pulse facilitation, potentiation, and depression. All of the operations of the devices were performed under ambient conditions (25 °C, humidity 50%), in the dark probe station. The IZO/IGZO synaptic transistor exhibits similar energy efficiency to a human brain, and this strategy is expected to be utilized for the fabrication of various ultra-low energy consuming synaptic transistors.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/D1TC01451J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic layer epitaxy ; Brain ; Electric double layer ; Electric potential ; Energy consumption ; Indium gallium zinc oxide ; Neuromorphic computing ; Power consumption ; Semiconductor devices ; Semiconductors ; Silicon dioxide ; Synapses ; Transistors ; Voltage</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-08, Vol.9 (32), p.10243-10253</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-277d3915f2c0663bbbc8965083f4b8c834bb04a253c0ad03a0fb7809b2299ecd3</citedby><cites>FETCH-LOGICAL-c259t-277d3915f2c0663bbbc8965083f4b8c834bb04a253c0ad03a0fb7809b2299ecd3</cites><orcidid>0000-0001-5494-702X ; 0000-0001-6863-6425 ; 0000-0002-5289-016X ; 0000-0002-6952-0544 ; 0000-0001-7165-8211 ; 0000-0002-0190-4226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cho, Seong-In</creatorcontrib><creatorcontrib>Jeon, Jae Bum</creatorcontrib><creatorcontrib>Kim, Joo Hyung</creatorcontrib><creatorcontrib>Lee, Seung Hee</creatorcontrib><creatorcontrib>Jeong, Wooseok</creatorcontrib><creatorcontrib>Kim, Jingyu</creatorcontrib><creatorcontrib>Kim, Geunyoung</creatorcontrib><creatorcontrib>Kim, Kyung Min</creatorcontrib><creatorcontrib>Park, Sang-Hee Ko</creatorcontrib><title>Synaptic transistors with human brain-like fJ energy consumption via double oxide semiconductor engineering for neuromorphic electronics</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Neuromorphic devices that mimic a human brain have attracted significant attention in the field of next-generation semiconductors. The human brain can efficiently process information with low power consumption. Several energy efficient artificial synapses have been reported; however, the energy consumption of these synapses is significantly higher than that of the human brain (10 fJ). In this study, we propose the use of double oxide semiconductors for obtaining synaptic transistors with ultra-low energy consumption. The synaptic transistor comprising InZnO (IZO) and InGaZnO (IGZO) exhibits a high mobility and positive turn-on voltage, which are required for ultra-low energy consumption. SiO
2
deposited at 200 °C by plasma enhanced atomic layer deposition is used as an electric double layer gate insulator. The IZO/IGZO synaptic transistor consumed an ultra-low energy of 0.269 fJ (gate voltage: 3.5 V, 1 ms and drain voltage: 3 mV). Furthermore, the synaptic transistor exhibits various synaptic plasticity features under the brain-like energy conditions, including excitatory post-synaptic current, paired-pulse facilitation, potentiation, and depression. All of the operations of the devices were performed under ambient conditions (25 °C, humidity 50%), in the dark probe station. The IZO/IGZO synaptic transistor exhibits similar energy efficiency to a human brain, and this strategy is expected to be utilized for the fabrication of various ultra-low energy consuming synaptic transistors.</description><subject>Atomic layer epitaxy</subject><subject>Brain</subject><subject>Electric double layer</subject><subject>Electric potential</subject><subject>Energy consumption</subject><subject>Indium gallium zinc oxide</subject><subject>Neuromorphic computing</subject><subject>Power consumption</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silicon dioxide</subject><subject>Synapses</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOOZe_AQB34Rq_jRp8yhTp2Pgg_O5JGm6ZbZJTVp138CPbWSi9-XeC79zDhwAzjG6woiK61u8niOcM7w8AhOCGMoKRvPjv5vwUzCLcYfSlJiXXEzA1_PeyX6wGg5Bumjj4EOEH3bYwu3YSQdVkNZlrX01sFlC40zY7KH2Lo5dknkH362EtR9Va6D_tLWB0XQ2AfWok1dSbKwzJli3gU36nRmD73zotynTtEYPwTur4xk4aWQbzex3T8HL_d16_pCtnhaP85tVpgkTQ0aKoqYCs4ZoxDlVSulScIZK2uSq1CXNlUK5JIxqJGtEJWpUUSKhCBHC6JpOwcXBtw_-bTRxqHZ-DC5FVoRxkvO8KGiiLg-UDj7GYJqqD7aTYV9hVP2UXf2XTb8B5MZ0og</recordid><startdate>20210828</startdate><enddate>20210828</enddate><creator>Cho, Seong-In</creator><creator>Jeon, Jae Bum</creator><creator>Kim, Joo Hyung</creator><creator>Lee, Seung Hee</creator><creator>Jeong, Wooseok</creator><creator>Kim, Jingyu</creator><creator>Kim, Geunyoung</creator><creator>Kim, Kyung Min</creator><creator>Park, Sang-Hee Ko</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5494-702X</orcidid><orcidid>https://orcid.org/0000-0001-6863-6425</orcidid><orcidid>https://orcid.org/0000-0002-5289-016X</orcidid><orcidid>https://orcid.org/0000-0002-6952-0544</orcidid><orcidid>https://orcid.org/0000-0001-7165-8211</orcidid><orcidid>https://orcid.org/0000-0002-0190-4226</orcidid></search><sort><creationdate>20210828</creationdate><title>Synaptic transistors with human brain-like fJ energy consumption via double oxide semiconductor engineering for neuromorphic electronics</title><author>Cho, Seong-In ; Jeon, Jae Bum ; Kim, Joo Hyung ; Lee, Seung Hee ; Jeong, Wooseok ; Kim, Jingyu ; Kim, Geunyoung ; Kim, Kyung Min ; Park, Sang-Hee Ko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-277d3915f2c0663bbbc8965083f4b8c834bb04a253c0ad03a0fb7809b2299ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic layer epitaxy</topic><topic>Brain</topic><topic>Electric double layer</topic><topic>Electric potential</topic><topic>Energy consumption</topic><topic>Indium gallium zinc oxide</topic><topic>Neuromorphic computing</topic><topic>Power consumption</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silicon dioxide</topic><topic>Synapses</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Seong-In</creatorcontrib><creatorcontrib>Jeon, Jae Bum</creatorcontrib><creatorcontrib>Kim, Joo Hyung</creatorcontrib><creatorcontrib>Lee, Seung Hee</creatorcontrib><creatorcontrib>Jeong, Wooseok</creatorcontrib><creatorcontrib>Kim, Jingyu</creatorcontrib><creatorcontrib>Kim, Geunyoung</creatorcontrib><creatorcontrib>Kim, Kyung Min</creatorcontrib><creatorcontrib>Park, Sang-Hee Ko</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Seong-In</au><au>Jeon, Jae Bum</au><au>Kim, Joo Hyung</au><au>Lee, Seung Hee</au><au>Jeong, Wooseok</au><au>Kim, Jingyu</au><au>Kim, Geunyoung</au><au>Kim, Kyung Min</au><au>Park, Sang-Hee Ko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic transistors with human brain-like fJ energy consumption via double oxide semiconductor engineering for neuromorphic electronics</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2021-08-28</date><risdate>2021</risdate><volume>9</volume><issue>32</issue><spage>10243</spage><epage>10253</epage><pages>10243-10253</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Neuromorphic devices that mimic a human brain have attracted significant attention in the field of next-generation semiconductors. The human brain can efficiently process information with low power consumption. Several energy efficient artificial synapses have been reported; however, the energy consumption of these synapses is significantly higher than that of the human brain (10 fJ). In this study, we propose the use of double oxide semiconductors for obtaining synaptic transistors with ultra-low energy consumption. The synaptic transistor comprising InZnO (IZO) and InGaZnO (IGZO) exhibits a high mobility and positive turn-on voltage, which are required for ultra-low energy consumption. SiO
2
deposited at 200 °C by plasma enhanced atomic layer deposition is used as an electric double layer gate insulator. The IZO/IGZO synaptic transistor consumed an ultra-low energy of 0.269 fJ (gate voltage: 3.5 V, 1 ms and drain voltage: 3 mV). Furthermore, the synaptic transistor exhibits various synaptic plasticity features under the brain-like energy conditions, including excitatory post-synaptic current, paired-pulse facilitation, potentiation, and depression. All of the operations of the devices were performed under ambient conditions (25 °C, humidity 50%), in the dark probe station. The IZO/IGZO synaptic transistor exhibits similar energy efficiency to a human brain, and this strategy is expected to be utilized for the fabrication of various ultra-low energy consuming synaptic transistors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D1TC01451J</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5494-702X</orcidid><orcidid>https://orcid.org/0000-0001-6863-6425</orcidid><orcidid>https://orcid.org/0000-0002-5289-016X</orcidid><orcidid>https://orcid.org/0000-0002-6952-0544</orcidid><orcidid>https://orcid.org/0000-0001-7165-8211</orcidid><orcidid>https://orcid.org/0000-0002-0190-4226</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-08, Vol.9 (32), p.10243-10253 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2562464773 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Atomic layer epitaxy Brain Electric double layer Electric potential Energy consumption Indium gallium zinc oxide Neuromorphic computing Power consumption Semiconductor devices Semiconductors Silicon dioxide Synapses Transistors Voltage |
title | Synaptic transistors with human brain-like fJ energy consumption via double oxide semiconductor engineering for neuromorphic electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20transistors%20with%20human%20brain-like%20fJ%20energy%20consumption%20via%20double%20oxide%20semiconductor%20engineering%20for%20neuromorphic%20electronics&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Cho,%20Seong-In&rft.date=2021-08-28&rft.volume=9&rft.issue=32&rft.spage=10243&rft.epage=10253&rft.pages=10243-10253&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/D1TC01451J&rft_dat=%3Cproquest_cross%3E2562464773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562464773&rft_id=info:pmid/&rfr_iscdi=true |