Reversible and Tunable Second‐Order Nonlinear Optical Susceptibility in PZT Thin Films for Integrated Optics

Second‐order nonlinear optical processes enable a wide range of applications used in research and industry. The majority of available second‐order nonlinear devices however relies on bulk nonlinear crystals with low second‐order nonlinearity. By exploiting the advancements made in integrated optics,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2021-08, Vol.9 (16), p.n/a
Hauptverfasser: Feutmba, Gilles F., Hermans, Artur, George, John P., Rijckaert, Hannes, Ansari, Irfan, Van Thourhout, Dries, Beeckman, Jeroen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced optical materials
container_volume 9
creator Feutmba, Gilles F.
Hermans, Artur
George, John P.
Rijckaert, Hannes
Ansari, Irfan
Van Thourhout, Dries
Beeckman, Jeroen
description Second‐order nonlinear optical processes enable a wide range of applications used in research and industry. The majority of available second‐order nonlinear devices however relies on bulk nonlinear crystals with low second‐order nonlinearity. By exploiting the advancements made in integrated optics, materials with large second‐order nonlinearity can enable efficient and small‐sized on‐chip nonlinear devices at low cost. Unfortunately, silicon and silicon nitride, mostly used for photonics integrated circuits exhibit negligible second‐order nonlinearity (χ(2)) and alternate materials have to be investigated. Lead zirconate titanate (PZT) thin films with high second‐order nonlinearity stand as a good candidate for on‐chip nonlinearity. An electric‐field induced tuning of χ(2) is demonstrated here in PZT thin films grown on glass substrates with a tuning efficiency of 3.35 pm V−2. Strong second‐harmonic generation is recorded and a very high dominant tensor component χzzz(2) of 128 pm V−1 is reported. The χ(2) of the PZT thin films can be reversed by poling with a DC electric field at room temperature. This opens avenues for highly efficient and tunable on‐chip nonlinear devices. The second‐order nonlinear properties of lead zirconate titanate (PZT) thin films grown on glass substrates were studied in second‐harmonic generation (SHG) experiments. By poling the thin films at room temperature, a tunable and reversible χ(2) is demonstrated. The PZT thin films can be directly grown on integrated waveguides using a low‐loss lanthanide‐based seed layer enabling a viable route for efficient on‐chip nonlinearity.
doi_str_mv 10.1002/adom.202100149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562419896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562419896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-280e1d2a438e00a5bb4b665d81c598f5e8a4df7b0be91d0565227378be60caba3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EElXpymyJucV24iQeq0KhUiGIhoUlsuMLuEqdYiegbjwCz8iTkCoI2JjuO-n_7qQfoVNKJpQQdi51vZkwwrqFhuIADRgVfExJTA__8DEaeb8mXYbEgQjjAbL38ArOG1UBllbjrLVyzysoaqs_3z9Sp8Hh29pWxoJ0ON02ppAVXrW-gI6VqUyzw8biu8cMZ88dzE218bisHV7YBp6cbED3nj9BR6WsPIy-5xA9zC-z2fV4mV4tZtPluAh4LMYsIUA1k2GQACGSKxWqKOI6oQUXSckhkaEuY0UUCKoJjzhjcRAnCiJSSCWDITrr725d_dKCb_J13TrbvcwZj1hIRSKiLjXpU4WrvXdQ5ltnNtLtckryfa35vtb8p9ZOEL3wZirY_ZPOpxfpza_7BaSHfSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562419896</pqid></control><display><type>article</type><title>Reversible and Tunable Second‐Order Nonlinear Optical Susceptibility in PZT Thin Films for Integrated Optics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feutmba, Gilles F. ; Hermans, Artur ; George, John P. ; Rijckaert, Hannes ; Ansari, Irfan ; Van Thourhout, Dries ; Beeckman, Jeroen</creator><creatorcontrib>Feutmba, Gilles F. ; Hermans, Artur ; George, John P. ; Rijckaert, Hannes ; Ansari, Irfan ; Van Thourhout, Dries ; Beeckman, Jeroen</creatorcontrib><description>Second‐order nonlinear optical processes enable a wide range of applications used in research and industry. The majority of available second‐order nonlinear devices however relies on bulk nonlinear crystals with low second‐order nonlinearity. By exploiting the advancements made in integrated optics, materials with large second‐order nonlinearity can enable efficient and small‐sized on‐chip nonlinear devices at low cost. Unfortunately, silicon and silicon nitride, mostly used for photonics integrated circuits exhibit negligible second‐order nonlinearity (χ(2)) and alternate materials have to be investigated. Lead zirconate titanate (PZT) thin films with high second‐order nonlinearity stand as a good candidate for on‐chip nonlinearity. An electric‐field induced tuning of χ(2) is demonstrated here in PZT thin films grown on glass substrates with a tuning efficiency of 3.35 pm V−2. Strong second‐harmonic generation is recorded and a very high dominant tensor component χzzz(2) of 128 pm V−1 is reported. The χ(2) of the PZT thin films can be reversed by poling with a DC electric field at room temperature. This opens avenues for highly efficient and tunable on‐chip nonlinear devices. The second‐order nonlinear properties of lead zirconate titanate (PZT) thin films grown on glass substrates were studied in second‐harmonic generation (SHG) experiments. By poling the thin films at room temperature, a tunable and reversible χ(2) is demonstrated. The PZT thin films can be directly grown on integrated waveguides using a low‐loss lanthanide‐based seed layer enabling a viable route for efficient on‐chip nonlinearity.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202100149</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Electric fields ; electric‐field‐induced tuning ; Glass substrates ; Harmonic generations ; Integrated circuits ; Integrated optics ; lead zirconate titanate ; Lead zirconate titanates ; Materials science ; Nonlinear optics ; Nonlinearity ; Optics ; reversible second‐order nonlinearity ; Room temperature ; second‐harmonic generation ; Silicon nitride ; Tensors ; Thin films ; Tuning</subject><ispartof>Advanced optical materials, 2021-08, Vol.9 (16), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-280e1d2a438e00a5bb4b665d81c598f5e8a4df7b0be91d0565227378be60caba3</citedby><cites>FETCH-LOGICAL-c3579-280e1d2a438e00a5bb4b665d81c598f5e8a4df7b0be91d0565227378be60caba3</cites><orcidid>0000-0003-2911-7125 ; 0000-0003-0111-431X ; 0000-0002-0711-2465 ; 0000-0002-6078-2919 ; 0000-0002-8499-9602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202100149$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202100149$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Feutmba, Gilles F.</creatorcontrib><creatorcontrib>Hermans, Artur</creatorcontrib><creatorcontrib>George, John P.</creatorcontrib><creatorcontrib>Rijckaert, Hannes</creatorcontrib><creatorcontrib>Ansari, Irfan</creatorcontrib><creatorcontrib>Van Thourhout, Dries</creatorcontrib><creatorcontrib>Beeckman, Jeroen</creatorcontrib><title>Reversible and Tunable Second‐Order Nonlinear Optical Susceptibility in PZT Thin Films for Integrated Optics</title><title>Advanced optical materials</title><description>Second‐order nonlinear optical processes enable a wide range of applications used in research and industry. The majority of available second‐order nonlinear devices however relies on bulk nonlinear crystals with low second‐order nonlinearity. By exploiting the advancements made in integrated optics, materials with large second‐order nonlinearity can enable efficient and small‐sized on‐chip nonlinear devices at low cost. Unfortunately, silicon and silicon nitride, mostly used for photonics integrated circuits exhibit negligible second‐order nonlinearity (χ(2)) and alternate materials have to be investigated. Lead zirconate titanate (PZT) thin films with high second‐order nonlinearity stand as a good candidate for on‐chip nonlinearity. An electric‐field induced tuning of χ(2) is demonstrated here in PZT thin films grown on glass substrates with a tuning efficiency of 3.35 pm V−2. Strong second‐harmonic generation is recorded and a very high dominant tensor component χzzz(2) of 128 pm V−1 is reported. The χ(2) of the PZT thin films can be reversed by poling with a DC electric field at room temperature. This opens avenues for highly efficient and tunable on‐chip nonlinear devices. The second‐order nonlinear properties of lead zirconate titanate (PZT) thin films grown on glass substrates were studied in second‐harmonic generation (SHG) experiments. By poling the thin films at room temperature, a tunable and reversible χ(2) is demonstrated. The PZT thin films can be directly grown on integrated waveguides using a low‐loss lanthanide‐based seed layer enabling a viable route for efficient on‐chip nonlinearity.</description><subject>Electric fields</subject><subject>electric‐field‐induced tuning</subject><subject>Glass substrates</subject><subject>Harmonic generations</subject><subject>Integrated circuits</subject><subject>Integrated optics</subject><subject>lead zirconate titanate</subject><subject>Lead zirconate titanates</subject><subject>Materials science</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optics</subject><subject>reversible second‐order nonlinearity</subject><subject>Room temperature</subject><subject>second‐harmonic generation</subject><subject>Silicon nitride</subject><subject>Tensors</subject><subject>Thin films</subject><subject>Tuning</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EElXpymyJucV24iQeq0KhUiGIhoUlsuMLuEqdYiegbjwCz8iTkCoI2JjuO-n_7qQfoVNKJpQQdi51vZkwwrqFhuIADRgVfExJTA__8DEaeb8mXYbEgQjjAbL38ArOG1UBllbjrLVyzysoaqs_3z9Sp8Hh29pWxoJ0ON02ppAVXrW-gI6VqUyzw8biu8cMZ88dzE218bisHV7YBp6cbED3nj9BR6WsPIy-5xA9zC-z2fV4mV4tZtPluAh4LMYsIUA1k2GQACGSKxWqKOI6oQUXSckhkaEuY0UUCKoJjzhjcRAnCiJSSCWDITrr725d_dKCb_J13TrbvcwZj1hIRSKiLjXpU4WrvXdQ5ltnNtLtckryfa35vtb8p9ZOEL3wZirY_ZPOpxfpza_7BaSHfSE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Feutmba, Gilles F.</creator><creator>Hermans, Artur</creator><creator>George, John P.</creator><creator>Rijckaert, Hannes</creator><creator>Ansari, Irfan</creator><creator>Van Thourhout, Dries</creator><creator>Beeckman, Jeroen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2911-7125</orcidid><orcidid>https://orcid.org/0000-0003-0111-431X</orcidid><orcidid>https://orcid.org/0000-0002-0711-2465</orcidid><orcidid>https://orcid.org/0000-0002-6078-2919</orcidid><orcidid>https://orcid.org/0000-0002-8499-9602</orcidid></search><sort><creationdate>20210801</creationdate><title>Reversible and Tunable Second‐Order Nonlinear Optical Susceptibility in PZT Thin Films for Integrated Optics</title><author>Feutmba, Gilles F. ; Hermans, Artur ; George, John P. ; Rijckaert, Hannes ; Ansari, Irfan ; Van Thourhout, Dries ; Beeckman, Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-280e1d2a438e00a5bb4b665d81c598f5e8a4df7b0be91d0565227378be60caba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electric fields</topic><topic>electric‐field‐induced tuning</topic><topic>Glass substrates</topic><topic>Harmonic generations</topic><topic>Integrated circuits</topic><topic>Integrated optics</topic><topic>lead zirconate titanate</topic><topic>Lead zirconate titanates</topic><topic>Materials science</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optics</topic><topic>reversible second‐order nonlinearity</topic><topic>Room temperature</topic><topic>second‐harmonic generation</topic><topic>Silicon nitride</topic><topic>Tensors</topic><topic>Thin films</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Feutmba, Gilles F.</creatorcontrib><creatorcontrib>Hermans, Artur</creatorcontrib><creatorcontrib>George, John P.</creatorcontrib><creatorcontrib>Rijckaert, Hannes</creatorcontrib><creatorcontrib>Ansari, Irfan</creatorcontrib><creatorcontrib>Van Thourhout, Dries</creatorcontrib><creatorcontrib>Beeckman, Jeroen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feutmba, Gilles F.</au><au>Hermans, Artur</au><au>George, John P.</au><au>Rijckaert, Hannes</au><au>Ansari, Irfan</au><au>Van Thourhout, Dries</au><au>Beeckman, Jeroen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible and Tunable Second‐Order Nonlinear Optical Susceptibility in PZT Thin Films for Integrated Optics</atitle><jtitle>Advanced optical materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>9</volume><issue>16</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Second‐order nonlinear optical processes enable a wide range of applications used in research and industry. The majority of available second‐order nonlinear devices however relies on bulk nonlinear crystals with low second‐order nonlinearity. By exploiting the advancements made in integrated optics, materials with large second‐order nonlinearity can enable efficient and small‐sized on‐chip nonlinear devices at low cost. Unfortunately, silicon and silicon nitride, mostly used for photonics integrated circuits exhibit negligible second‐order nonlinearity (χ(2)) and alternate materials have to be investigated. Lead zirconate titanate (PZT) thin films with high second‐order nonlinearity stand as a good candidate for on‐chip nonlinearity. An electric‐field induced tuning of χ(2) is demonstrated here in PZT thin films grown on glass substrates with a tuning efficiency of 3.35 pm V−2. Strong second‐harmonic generation is recorded and a very high dominant tensor component χzzz(2) of 128 pm V−1 is reported. The χ(2) of the PZT thin films can be reversed by poling with a DC electric field at room temperature. This opens avenues for highly efficient and tunable on‐chip nonlinear devices. The second‐order nonlinear properties of lead zirconate titanate (PZT) thin films grown on glass substrates were studied in second‐harmonic generation (SHG) experiments. By poling the thin films at room temperature, a tunable and reversible χ(2) is demonstrated. The PZT thin films can be directly grown on integrated waveguides using a low‐loss lanthanide‐based seed layer enabling a viable route for efficient on‐chip nonlinearity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202100149</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2911-7125</orcidid><orcidid>https://orcid.org/0000-0003-0111-431X</orcidid><orcidid>https://orcid.org/0000-0002-0711-2465</orcidid><orcidid>https://orcid.org/0000-0002-6078-2919</orcidid><orcidid>https://orcid.org/0000-0002-8499-9602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-08, Vol.9 (16), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2562419896
source Wiley Online Library Journals Frontfile Complete
subjects Electric fields
electric‐field‐induced tuning
Glass substrates
Harmonic generations
Integrated circuits
Integrated optics
lead zirconate titanate
Lead zirconate titanates
Materials science
Nonlinear optics
Nonlinearity
Optics
reversible second‐order nonlinearity
Room temperature
second‐harmonic generation
Silicon nitride
Tensors
Thin films
Tuning
title Reversible and Tunable Second‐Order Nonlinear Optical Susceptibility in PZT Thin Films for Integrated Optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20and%20Tunable%20Second%E2%80%90Order%20Nonlinear%20Optical%20Susceptibility%20in%20PZT%20Thin%20Films%20for%20Integrated%20Optics&rft.jtitle=Advanced%20optical%20materials&rft.au=Feutmba,%20Gilles%20F.&rft.date=2021-08-01&rft.volume=9&rft.issue=16&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202100149&rft_dat=%3Cproquest_cross%3E2562419896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562419896&rft_id=info:pmid/&rfr_iscdi=true