Fe toxicity in plants: Impacts and remediation

Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2021-09, Vol.173 (1), p.201-222, Article ppl.13361
Hauptverfasser: Zahra, Noreen, Hafeez, Muhammad Bilal, Shaukat, Kanval, Wahid, Abdul, Hasanuzzaman, Mirza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 1
container_start_page 201
container_title Physiologia plantarum
container_volume 173
creator Zahra, Noreen
Hafeez, Muhammad Bilal
Shaukat, Kanval
Wahid, Abdul
Hasanuzzaman, Mirza
description Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe‐contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe‐contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.
doi_str_mv 10.1111/ppl.13361
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562379876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562379876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4191-a2384d1b7bb6f38faf389d2d6dc57646899562c2a0e1e19ff2c197a0c1bca1763</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUw8AdQJCaGpD47sWM2VFGoVIkOMFuO40iu8oWdCvrva5rCxg13y3Pv6R6EbgEnEGre93UClDI4Q1OgQsQUZ-k5mmJMIRYU-ARdeb_FGBgDcokmlGYpzzGfomRpoqH7ttoO-8i2UV-rdvCP0arplR58pNoycqYxpVWD7dprdFGp2pub05yhj-Xz--I1Xr-9rBZP61inICBWhOZpCQUvClbRvFKhiZKUrNQZZynLhcgY0URhAwZEVRENgiusodAKOKMzdD_m9q773Bk_yG23c204KUnYpFzkR-phpLTrvHemkr2zjXJ7CVj-mJHBjDyaCezdKXFXhHf-yF8VAZiPwJetzf7_JLnZrMfIA2VJazg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562379876</pqid></control><display><type>article</type><title>Fe toxicity in plants: Impacts and remediation</title><source>Wiley-Blackwell Full Collection</source><creator>Zahra, Noreen ; Hafeez, Muhammad Bilal ; Shaukat, Kanval ; Wahid, Abdul ; Hasanuzzaman, Mirza</creator><creatorcontrib>Zahra, Noreen ; Hafeez, Muhammad Bilal ; Shaukat, Kanval ; Wahid, Abdul ; Hasanuzzaman, Mirza</creatorcontrib><description>Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe‐contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe‐contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13361</identifier><identifier>PMID: 33547807</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agricultural practices ; Agronomy ; Biomolecules ; Carbon ; Cell death ; Chloroplasts ; Crop production ; Crop yield ; Damage ; Earth crust ; Enzymatic activity ; Experimentation ; Gene mapping ; Germination ; Nutrient uptake ; Nutrients ; Photosynthesis ; Photosynthetic apparatus ; Physiology ; Phytoremediation ; Plant diseases ; Plant growth ; Quantitative trait loci ; Remediation ; Rhizosphere ; Seed germination ; Soil chemistry ; Soil contamination ; Soil dynamics ; Soil pollution ; Soil remediation ; Toxicity ; Translocation ; Ultrastructure ; Water relations</subject><ispartof>Physiologia plantarum, 2021-09, Vol.173 (1), p.201-222, Article ppl.13361</ispartof><rights>2021 Scandinavian Plant Physiology Society</rights><rights>2021 Scandinavian Plant Physiology Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4191-a2384d1b7bb6f38faf389d2d6dc57646899562c2a0e1e19ff2c197a0c1bca1763</citedby><cites>FETCH-LOGICAL-c4191-a2384d1b7bb6f38faf389d2d6dc57646899562c2a0e1e19ff2c197a0c1bca1763</cites><orcidid>0000-0003-4599-0901 ; 0000-0001-6719-6667 ; 0000-0002-0461-8743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33547807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zahra, Noreen</creatorcontrib><creatorcontrib>Hafeez, Muhammad Bilal</creatorcontrib><creatorcontrib>Shaukat, Kanval</creatorcontrib><creatorcontrib>Wahid, Abdul</creatorcontrib><creatorcontrib>Hasanuzzaman, Mirza</creatorcontrib><title>Fe toxicity in plants: Impacts and remediation</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe‐contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe‐contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.</description><subject>Agricultural practices</subject><subject>Agronomy</subject><subject>Biomolecules</subject><subject>Carbon</subject><subject>Cell death</subject><subject>Chloroplasts</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Damage</subject><subject>Earth crust</subject><subject>Enzymatic activity</subject><subject>Experimentation</subject><subject>Gene mapping</subject><subject>Germination</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Photosynthesis</subject><subject>Photosynthetic apparatus</subject><subject>Physiology</subject><subject>Phytoremediation</subject><subject>Plant diseases</subject><subject>Plant growth</subject><subject>Quantitative trait loci</subject><subject>Remediation</subject><subject>Rhizosphere</subject><subject>Seed germination</subject><subject>Soil chemistry</subject><subject>Soil contamination</subject><subject>Soil dynamics</subject><subject>Soil pollution</subject><subject>Soil remediation</subject><subject>Toxicity</subject><subject>Translocation</subject><subject>Ultrastructure</subject><subject>Water relations</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUw8AdQJCaGpD47sWM2VFGoVIkOMFuO40iu8oWdCvrva5rCxg13y3Pv6R6EbgEnEGre93UClDI4Q1OgQsQUZ-k5mmJMIRYU-ARdeb_FGBgDcokmlGYpzzGfomRpoqH7ttoO-8i2UV-rdvCP0arplR58pNoycqYxpVWD7dprdFGp2pub05yhj-Xz--I1Xr-9rBZP61inICBWhOZpCQUvClbRvFKhiZKUrNQZZynLhcgY0URhAwZEVRENgiusodAKOKMzdD_m9q773Bk_yG23c204KUnYpFzkR-phpLTrvHemkr2zjXJ7CVj-mJHBjDyaCezdKXFXhHf-yF8VAZiPwJetzf7_JLnZrMfIA2VJazg</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Zahra, Noreen</creator><creator>Hafeez, Muhammad Bilal</creator><creator>Shaukat, Kanval</creator><creator>Wahid, Abdul</creator><creator>Hasanuzzaman, Mirza</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4599-0901</orcidid><orcidid>https://orcid.org/0000-0001-6719-6667</orcidid><orcidid>https://orcid.org/0000-0002-0461-8743</orcidid></search><sort><creationdate>202109</creationdate><title>Fe toxicity in plants: Impacts and remediation</title><author>Zahra, Noreen ; Hafeez, Muhammad Bilal ; Shaukat, Kanval ; Wahid, Abdul ; Hasanuzzaman, Mirza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4191-a2384d1b7bb6f38faf389d2d6dc57646899562c2a0e1e19ff2c197a0c1bca1763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural practices</topic><topic>Agronomy</topic><topic>Biomolecules</topic><topic>Carbon</topic><topic>Cell death</topic><topic>Chloroplasts</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Damage</topic><topic>Earth crust</topic><topic>Enzymatic activity</topic><topic>Experimentation</topic><topic>Gene mapping</topic><topic>Germination</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Photosynthesis</topic><topic>Photosynthetic apparatus</topic><topic>Physiology</topic><topic>Phytoremediation</topic><topic>Plant diseases</topic><topic>Plant growth</topic><topic>Quantitative trait loci</topic><topic>Remediation</topic><topic>Rhizosphere</topic><topic>Seed germination</topic><topic>Soil chemistry</topic><topic>Soil contamination</topic><topic>Soil dynamics</topic><topic>Soil pollution</topic><topic>Soil remediation</topic><topic>Toxicity</topic><topic>Translocation</topic><topic>Ultrastructure</topic><topic>Water relations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahra, Noreen</creatorcontrib><creatorcontrib>Hafeez, Muhammad Bilal</creatorcontrib><creatorcontrib>Shaukat, Kanval</creatorcontrib><creatorcontrib>Wahid, Abdul</creatorcontrib><creatorcontrib>Hasanuzzaman, Mirza</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahra, Noreen</au><au>Hafeez, Muhammad Bilal</au><au>Shaukat, Kanval</au><au>Wahid, Abdul</au><au>Hasanuzzaman, Mirza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe toxicity in plants: Impacts and remediation</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2021-09</date><risdate>2021</risdate><volume>173</volume><issue>1</issue><spage>201</spage><epage>222</epage><pages>201-222</pages><artnum>ppl.13361</artnum><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe‐contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe‐contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>33547807</pmid><doi>10.1111/ppl.13361</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4599-0901</orcidid><orcidid>https://orcid.org/0000-0001-6719-6667</orcidid><orcidid>https://orcid.org/0000-0002-0461-8743</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2021-09, Vol.173 (1), p.201-222, Article ppl.13361
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_journals_2562379876
source Wiley-Blackwell Full Collection
subjects Agricultural practices
Agronomy
Biomolecules
Carbon
Cell death
Chloroplasts
Crop production
Crop yield
Damage
Earth crust
Enzymatic activity
Experimentation
Gene mapping
Germination
Nutrient uptake
Nutrients
Photosynthesis
Photosynthetic apparatus
Physiology
Phytoremediation
Plant diseases
Plant growth
Quantitative trait loci
Remediation
Rhizosphere
Seed germination
Soil chemistry
Soil contamination
Soil dynamics
Soil pollution
Soil remediation
Toxicity
Translocation
Ultrastructure
Water relations
title Fe toxicity in plants: Impacts and remediation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe%20toxicity%20in%20plants:%20Impacts%20and%20remediation&rft.jtitle=Physiologia%20plantarum&rft.au=Zahra,%20Noreen&rft.date=2021-09&rft.volume=173&rft.issue=1&rft.spage=201&rft.epage=222&rft.pages=201-222&rft.artnum=ppl.13361&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13361&rft_dat=%3Cproquest_cross%3E2562379876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562379876&rft_id=info:pmid/33547807&rfr_iscdi=true