Fe toxicity in plants: Impacts and remediation
Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chl...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2021-09, Vol.173 (1), p.201-222, Article ppl.13361 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222 |
---|---|
container_issue | 1 |
container_start_page | 201 |
container_title | Physiologia plantarum |
container_volume | 173 |
creator | Zahra, Noreen Hafeez, Muhammad Bilal Shaukat, Kanval Wahid, Abdul Hasanuzzaman, Mirza |
description | Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe‐contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe‐contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested. |
doi_str_mv | 10.1111/ppl.13361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562379876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562379876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4191-a2384d1b7bb6f38faf389d2d6dc57646899562c2a0e1e19ff2c197a0c1bca1763</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUw8AdQJCaGpD47sWM2VFGoVIkOMFuO40iu8oWdCvrva5rCxg13y3Pv6R6EbgEnEGre93UClDI4Q1OgQsQUZ-k5mmJMIRYU-ARdeb_FGBgDcokmlGYpzzGfomRpoqH7ttoO-8i2UV-rdvCP0arplR58pNoycqYxpVWD7dprdFGp2pub05yhj-Xz--I1Xr-9rBZP61inICBWhOZpCQUvClbRvFKhiZKUrNQZZynLhcgY0URhAwZEVRENgiusodAKOKMzdD_m9q773Bk_yG23c204KUnYpFzkR-phpLTrvHemkr2zjXJ7CVj-mJHBjDyaCezdKXFXhHf-yF8VAZiPwJetzf7_JLnZrMfIA2VJazg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562379876</pqid></control><display><type>article</type><title>Fe toxicity in plants: Impacts and remediation</title><source>Wiley-Blackwell Full Collection</source><creator>Zahra, Noreen ; Hafeez, Muhammad Bilal ; Shaukat, Kanval ; Wahid, Abdul ; Hasanuzzaman, Mirza</creator><creatorcontrib>Zahra, Noreen ; Hafeez, Muhammad Bilal ; Shaukat, Kanval ; Wahid, Abdul ; Hasanuzzaman, Mirza</creatorcontrib><description>Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe‐contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe‐contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13361</identifier><identifier>PMID: 33547807</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agricultural practices ; Agronomy ; Biomolecules ; Carbon ; Cell death ; Chloroplasts ; Crop production ; Crop yield ; Damage ; Earth crust ; Enzymatic activity ; Experimentation ; Gene mapping ; Germination ; Nutrient uptake ; Nutrients ; Photosynthesis ; Photosynthetic apparatus ; Physiology ; Phytoremediation ; Plant diseases ; Plant growth ; Quantitative trait loci ; Remediation ; Rhizosphere ; Seed germination ; Soil chemistry ; Soil contamination ; Soil dynamics ; Soil pollution ; Soil remediation ; Toxicity ; Translocation ; Ultrastructure ; Water relations</subject><ispartof>Physiologia plantarum, 2021-09, Vol.173 (1), p.201-222, Article ppl.13361</ispartof><rights>2021 Scandinavian Plant Physiology Society</rights><rights>2021 Scandinavian Plant Physiology Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4191-a2384d1b7bb6f38faf389d2d6dc57646899562c2a0e1e19ff2c197a0c1bca1763</citedby><cites>FETCH-LOGICAL-c4191-a2384d1b7bb6f38faf389d2d6dc57646899562c2a0e1e19ff2c197a0c1bca1763</cites><orcidid>0000-0003-4599-0901 ; 0000-0001-6719-6667 ; 0000-0002-0461-8743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33547807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zahra, Noreen</creatorcontrib><creatorcontrib>Hafeez, Muhammad Bilal</creatorcontrib><creatorcontrib>Shaukat, Kanval</creatorcontrib><creatorcontrib>Wahid, Abdul</creatorcontrib><creatorcontrib>Hasanuzzaman, Mirza</creatorcontrib><title>Fe toxicity in plants: Impacts and remediation</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe‐contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe‐contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.</description><subject>Agricultural practices</subject><subject>Agronomy</subject><subject>Biomolecules</subject><subject>Carbon</subject><subject>Cell death</subject><subject>Chloroplasts</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Damage</subject><subject>Earth crust</subject><subject>Enzymatic activity</subject><subject>Experimentation</subject><subject>Gene mapping</subject><subject>Germination</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Photosynthesis</subject><subject>Photosynthetic apparatus</subject><subject>Physiology</subject><subject>Phytoremediation</subject><subject>Plant diseases</subject><subject>Plant growth</subject><subject>Quantitative trait loci</subject><subject>Remediation</subject><subject>Rhizosphere</subject><subject>Seed germination</subject><subject>Soil chemistry</subject><subject>Soil contamination</subject><subject>Soil dynamics</subject><subject>Soil pollution</subject><subject>Soil remediation</subject><subject>Toxicity</subject><subject>Translocation</subject><subject>Ultrastructure</subject><subject>Water relations</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqUw8AdQJCaGpD47sWM2VFGoVIkOMFuO40iu8oWdCvrva5rCxg13y3Pv6R6EbgEnEGre93UClDI4Q1OgQsQUZ-k5mmJMIRYU-ARdeb_FGBgDcokmlGYpzzGfomRpoqH7ttoO-8i2UV-rdvCP0arplR58pNoycqYxpVWD7dprdFGp2pub05yhj-Xz--I1Xr-9rBZP61inICBWhOZpCQUvClbRvFKhiZKUrNQZZynLhcgY0URhAwZEVRENgiusodAKOKMzdD_m9q773Bk_yG23c204KUnYpFzkR-phpLTrvHemkr2zjXJ7CVj-mJHBjDyaCezdKXFXhHf-yF8VAZiPwJetzf7_JLnZrMfIA2VJazg</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Zahra, Noreen</creator><creator>Hafeez, Muhammad Bilal</creator><creator>Shaukat, Kanval</creator><creator>Wahid, Abdul</creator><creator>Hasanuzzaman, Mirza</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4599-0901</orcidid><orcidid>https://orcid.org/0000-0001-6719-6667</orcidid><orcidid>https://orcid.org/0000-0002-0461-8743</orcidid></search><sort><creationdate>202109</creationdate><title>Fe toxicity in plants: Impacts and remediation</title><author>Zahra, Noreen ; Hafeez, Muhammad Bilal ; Shaukat, Kanval ; Wahid, Abdul ; Hasanuzzaman, Mirza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4191-a2384d1b7bb6f38faf389d2d6dc57646899562c2a0e1e19ff2c197a0c1bca1763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural practices</topic><topic>Agronomy</topic><topic>Biomolecules</topic><topic>Carbon</topic><topic>Cell death</topic><topic>Chloroplasts</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Damage</topic><topic>Earth crust</topic><topic>Enzymatic activity</topic><topic>Experimentation</topic><topic>Gene mapping</topic><topic>Germination</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Photosynthesis</topic><topic>Photosynthetic apparatus</topic><topic>Physiology</topic><topic>Phytoremediation</topic><topic>Plant diseases</topic><topic>Plant growth</topic><topic>Quantitative trait loci</topic><topic>Remediation</topic><topic>Rhizosphere</topic><topic>Seed germination</topic><topic>Soil chemistry</topic><topic>Soil contamination</topic><topic>Soil dynamics</topic><topic>Soil pollution</topic><topic>Soil remediation</topic><topic>Toxicity</topic><topic>Translocation</topic><topic>Ultrastructure</topic><topic>Water relations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahra, Noreen</creatorcontrib><creatorcontrib>Hafeez, Muhammad Bilal</creatorcontrib><creatorcontrib>Shaukat, Kanval</creatorcontrib><creatorcontrib>Wahid, Abdul</creatorcontrib><creatorcontrib>Hasanuzzaman, Mirza</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahra, Noreen</au><au>Hafeez, Muhammad Bilal</au><au>Shaukat, Kanval</au><au>Wahid, Abdul</au><au>Hasanuzzaman, Mirza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe toxicity in plants: Impacts and remediation</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2021-09</date><risdate>2021</risdate><volume>173</volume><issue>1</issue><spage>201</spage><epage>222</epage><pages>201-222</pages><artnum>ppl.13361</artnum><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe‐contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe‐contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>33547807</pmid><doi>10.1111/ppl.13361</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4599-0901</orcidid><orcidid>https://orcid.org/0000-0001-6719-6667</orcidid><orcidid>https://orcid.org/0000-0002-0461-8743</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2021-09, Vol.173 (1), p.201-222, Article ppl.13361 |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_proquest_journals_2562379876 |
source | Wiley-Blackwell Full Collection |
subjects | Agricultural practices Agronomy Biomolecules Carbon Cell death Chloroplasts Crop production Crop yield Damage Earth crust Enzymatic activity Experimentation Gene mapping Germination Nutrient uptake Nutrients Photosynthesis Photosynthetic apparatus Physiology Phytoremediation Plant diseases Plant growth Quantitative trait loci Remediation Rhizosphere Seed germination Soil chemistry Soil contamination Soil dynamics Soil pollution Soil remediation Toxicity Translocation Ultrastructure Water relations |
title | Fe toxicity in plants: Impacts and remediation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe%20toxicity%20in%20plants:%20Impacts%20and%20remediation&rft.jtitle=Physiologia%20plantarum&rft.au=Zahra,%20Noreen&rft.date=2021-09&rft.volume=173&rft.issue=1&rft.spage=201&rft.epage=222&rft.pages=201-222&rft.artnum=ppl.13361&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13361&rft_dat=%3Cproquest_cross%3E2562379876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562379876&rft_id=info:pmid/33547807&rfr_iscdi=true |