Nonparametric portfolio efficiency measurement with higher moments

The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical economics 2021-09, Vol.61 (3), p.1435-1459
1. Verfasser: Krüger, Jens J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1459
container_issue 3
container_start_page 1435
container_title Empirical economics
container_volume 61
creator Krüger, Jens J
description The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach is extended by the computation of optimal directions endogenously by maximizing the distance toward the portfolio frontier as a novel methodological feature. An empirical application to Fama–French portfolios demonstrates the applicability of the nonparametric approach. The results show that the optimal directions to the frontier depend on the portfolio considered as well as on the period for which the moments are estimated. Skewness in particular plays a role in determining the optimal direction, whereas kurtosis seems to be less crucial.
doi_str_mv 10.1007/s00181-020-01917-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562368365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562368365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5ed8acae7c9c650d9808a7aff4f8be98273674a1e89aec5191ea7afaffe383c73</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AUEoeK5OmqZJj7r4Dxa96DnE7GQ3y7apSRfZb29qhdWLpxlmfu8N8wg5p3BFAcR1BKCS5lBADrSmIocDMqEl47msC3r4qz8mJzGuAYBJXk7I7bNvOx10g31wJut86K3fOJ-htc44bM0ua1DHbcAG2z77dP0qW7nlCkPW-GEUT8mR1ZuIZz91St7u715nj_n85eFpdjPPTSl4n3NcSG00ClObisOiliC10NaWVr5jLQvBKlFqirLWaHj6Aod1ApBJZgSbksvRtwv-Y4uxV2u_DW06qQpeFaySrOKJKkbKBB9jQKu64BoddoqCGrJSY1YqZaW-s1KQRNkoQuNbF_cSIQA4lbxKCBuRmJbtEsP--r_GF3-MhxJ7H1QhJSsr9gUzAYIC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562368365</pqid></control><display><type>article</type><title>Nonparametric portfolio efficiency measurement with higher moments</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Krüger, Jens J</creator><creatorcontrib>Krüger, Jens J</creatorcontrib><description>The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach is extended by the computation of optimal directions endogenously by maximizing the distance toward the portfolio frontier as a novel methodological feature. An empirical application to Fama–French portfolios demonstrates the applicability of the nonparametric approach. The results show that the optimal directions to the frontier depend on the portfolio considered as well as on the period for which the moments are estimated. Skewness in particular plays a role in determining the optimal direction, whereas kurtosis seems to be less crucial.</description><identifier>ISSN: 1435-8921</identifier><identifier>ISSN: 0377-7332</identifier><identifier>EISSN: 1435-8921</identifier><identifier>DOI: 10.1007/s00181-020-01917-0</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer</publisher><subject>Approximation ; Data envelopment analysis ; Directional distance functions ; Econometrics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Efficiency ; Expected utility ; Finance ; Insurance ; Kurtosis ; Linear programming ; Management ; Measurement ; Nonparametric statistics ; Portfolio choice ; Portfolio performance ; Portfolios ; Risk aversion ; Skewness ; Skewness and kurtosis ; Statistics for Business ; Stocks ; Utility functions</subject><ispartof>Empirical economics, 2021-09, Vol.61 (3), p.1435-1459</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5ed8acae7c9c650d9808a7aff4f8be98273674a1e89aec5191ea7afaffe383c73</citedby><cites>FETCH-LOGICAL-c475t-5ed8acae7c9c650d9808a7aff4f8be98273674a1e89aec5191ea7afaffe383c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00181-020-01917-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00181-020-01917-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Krüger, Jens J</creatorcontrib><title>Nonparametric portfolio efficiency measurement with higher moments</title><title>Empirical economics</title><addtitle>Empir Econ</addtitle><description>The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach is extended by the computation of optimal directions endogenously by maximizing the distance toward the portfolio frontier as a novel methodological feature. An empirical application to Fama–French portfolios demonstrates the applicability of the nonparametric approach. The results show that the optimal directions to the frontier depend on the portfolio considered as well as on the period for which the moments are estimated. Skewness in particular plays a role in determining the optimal direction, whereas kurtosis seems to be less crucial.</description><subject>Approximation</subject><subject>Data envelopment analysis</subject><subject>Directional distance functions</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Efficiency</subject><subject>Expected utility</subject><subject>Finance</subject><subject>Insurance</subject><subject>Kurtosis</subject><subject>Linear programming</subject><subject>Management</subject><subject>Measurement</subject><subject>Nonparametric statistics</subject><subject>Portfolio choice</subject><subject>Portfolio performance</subject><subject>Portfolios</subject><subject>Risk aversion</subject><subject>Skewness</subject><subject>Skewness and kurtosis</subject><subject>Statistics for Business</subject><subject>Stocks</subject><subject>Utility functions</subject><issn>1435-8921</issn><issn>0377-7332</issn><issn>1435-8921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AUEoeK5OmqZJj7r4Dxa96DnE7GQ3y7apSRfZb29qhdWLpxlmfu8N8wg5p3BFAcR1BKCS5lBADrSmIocDMqEl47msC3r4qz8mJzGuAYBJXk7I7bNvOx10g31wJut86K3fOJ-htc44bM0ua1DHbcAG2z77dP0qW7nlCkPW-GEUT8mR1ZuIZz91St7u715nj_n85eFpdjPPTSl4n3NcSG00ClObisOiliC10NaWVr5jLQvBKlFqirLWaHj6Aod1ApBJZgSbksvRtwv-Y4uxV2u_DW06qQpeFaySrOKJKkbKBB9jQKu64BoddoqCGrJSY1YqZaW-s1KQRNkoQuNbF_cSIQA4lbxKCBuRmJbtEsP--r_GF3-MhxJ7H1QhJSsr9gUzAYIC</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Krüger, Jens J</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OT2</scope><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Nonparametric portfolio efficiency measurement with higher moments</title><author>Krüger, Jens J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5ed8acae7c9c650d9808a7aff4f8be98273674a1e89aec5191ea7afaffe383c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Data envelopment analysis</topic><topic>Directional distance functions</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Efficiency</topic><topic>Expected utility</topic><topic>Finance</topic><topic>Insurance</topic><topic>Kurtosis</topic><topic>Linear programming</topic><topic>Management</topic><topic>Measurement</topic><topic>Nonparametric statistics</topic><topic>Portfolio choice</topic><topic>Portfolio performance</topic><topic>Portfolios</topic><topic>Risk aversion</topic><topic>Skewness</topic><topic>Skewness and kurtosis</topic><topic>Statistics for Business</topic><topic>Stocks</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krüger, Jens J</creatorcontrib><collection>EconStor</collection><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Empirical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krüger, Jens J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric portfolio efficiency measurement with higher moments</atitle><jtitle>Empirical economics</jtitle><stitle>Empir Econ</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>61</volume><issue>3</issue><spage>1435</spage><epage>1459</epage><pages>1435-1459</pages><issn>1435-8921</issn><issn>0377-7332</issn><eissn>1435-8921</eissn><abstract>The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach is extended by the computation of optimal directions endogenously by maximizing the distance toward the portfolio frontier as a novel methodological feature. An empirical application to Fama–French portfolios demonstrates the applicability of the nonparametric approach. The results show that the optimal directions to the frontier depend on the portfolio considered as well as on the period for which the moments are estimated. Skewness in particular plays a role in determining the optimal direction, whereas kurtosis seems to be less crucial.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00181-020-01917-0</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-8921
ispartof Empirical economics, 2021-09, Vol.61 (3), p.1435-1459
issn 1435-8921
0377-7332
1435-8921
language eng
recordid cdi_proquest_journals_2562368365
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Approximation
Data envelopment analysis
Directional distance functions
Econometrics
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Efficiency
Expected utility
Finance
Insurance
Kurtosis
Linear programming
Management
Measurement
Nonparametric statistics
Portfolio choice
Portfolio performance
Portfolios
Risk aversion
Skewness
Skewness and kurtosis
Statistics for Business
Stocks
Utility functions
title Nonparametric portfolio efficiency measurement with higher moments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20portfolio%20efficiency%20measurement%20with%20higher%20moments&rft.jtitle=Empirical%20economics&rft.au=Kr%C3%BCger,%20Jens%20J&rft.date=2021-09-01&rft.volume=61&rft.issue=3&rft.spage=1435&rft.epage=1459&rft.pages=1435-1459&rft.issn=1435-8921&rft.eissn=1435-8921&rft_id=info:doi/10.1007/s00181-020-01917-0&rft_dat=%3Cproquest_cross%3E2562368365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562368365&rft_id=info:pmid/&rfr_iscdi=true