Nonparametric portfolio efficiency measurement with higher moments
The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach...
Gespeichert in:
Veröffentlicht in: | Empirical economics 2021-09, Vol.61 (3), p.1435-1459 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1459 |
---|---|
container_issue | 3 |
container_start_page | 1435 |
container_title | Empirical economics |
container_volume | 61 |
creator | Krüger, Jens J |
description | The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach is extended by the computation of optimal directions endogenously by maximizing the distance toward the portfolio frontier as a novel methodological feature. An empirical application to Fama–French portfolios demonstrates the applicability of the nonparametric approach. The results show that the optimal directions to the frontier depend on the portfolio considered as well as on the period for which the moments are estimated. Skewness in particular plays a role in determining the optimal direction, whereas kurtosis seems to be less crucial. |
doi_str_mv | 10.1007/s00181-020-01917-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562368365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562368365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5ed8acae7c9c650d9808a7aff4f8be98273674a1e89aec5191ea7afaffe383c73</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AUEoeK5OmqZJj7r4Dxa96DnE7GQ3y7apSRfZb29qhdWLpxlmfu8N8wg5p3BFAcR1BKCS5lBADrSmIocDMqEl47msC3r4qz8mJzGuAYBJXk7I7bNvOx10g31wJut86K3fOJ-htc44bM0ua1DHbcAG2z77dP0qW7nlCkPW-GEUT8mR1ZuIZz91St7u715nj_n85eFpdjPPTSl4n3NcSG00ClObisOiliC10NaWVr5jLQvBKlFqirLWaHj6Aod1ApBJZgSbksvRtwv-Y4uxV2u_DW06qQpeFaySrOKJKkbKBB9jQKu64BoddoqCGrJSY1YqZaW-s1KQRNkoQuNbF_cSIQA4lbxKCBuRmJbtEsP--r_GF3-MhxJ7H1QhJSsr9gUzAYIC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562368365</pqid></control><display><type>article</type><title>Nonparametric portfolio efficiency measurement with higher moments</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Krüger, Jens J</creator><creatorcontrib>Krüger, Jens J</creatorcontrib><description>The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach is extended by the computation of optimal directions endogenously by maximizing the distance toward the portfolio frontier as a novel methodological feature. An empirical application to Fama–French portfolios demonstrates the applicability of the nonparametric approach. The results show that the optimal directions to the frontier depend on the portfolio considered as well as on the period for which the moments are estimated. Skewness in particular plays a role in determining the optimal direction, whereas kurtosis seems to be less crucial.</description><identifier>ISSN: 1435-8921</identifier><identifier>ISSN: 0377-7332</identifier><identifier>EISSN: 1435-8921</identifier><identifier>DOI: 10.1007/s00181-020-01917-0</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer</publisher><subject>Approximation ; Data envelopment analysis ; Directional distance functions ; Econometrics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Efficiency ; Expected utility ; Finance ; Insurance ; Kurtosis ; Linear programming ; Management ; Measurement ; Nonparametric statistics ; Portfolio choice ; Portfolio performance ; Portfolios ; Risk aversion ; Skewness ; Skewness and kurtosis ; Statistics for Business ; Stocks ; Utility functions</subject><ispartof>Empirical economics, 2021-09, Vol.61 (3), p.1435-1459</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5ed8acae7c9c650d9808a7aff4f8be98273674a1e89aec5191ea7afaffe383c73</citedby><cites>FETCH-LOGICAL-c475t-5ed8acae7c9c650d9808a7aff4f8be98273674a1e89aec5191ea7afaffe383c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00181-020-01917-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00181-020-01917-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Krüger, Jens J</creatorcontrib><title>Nonparametric portfolio efficiency measurement with higher moments</title><title>Empirical economics</title><addtitle>Empir Econ</addtitle><description>The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach is extended by the computation of optimal directions endogenously by maximizing the distance toward the portfolio frontier as a novel methodological feature. An empirical application to Fama–French portfolios demonstrates the applicability of the nonparametric approach. The results show that the optimal directions to the frontier depend on the portfolio considered as well as on the period for which the moments are estimated. Skewness in particular plays a role in determining the optimal direction, whereas kurtosis seems to be less crucial.</description><subject>Approximation</subject><subject>Data envelopment analysis</subject><subject>Directional distance functions</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Efficiency</subject><subject>Expected utility</subject><subject>Finance</subject><subject>Insurance</subject><subject>Kurtosis</subject><subject>Linear programming</subject><subject>Management</subject><subject>Measurement</subject><subject>Nonparametric statistics</subject><subject>Portfolio choice</subject><subject>Portfolio performance</subject><subject>Portfolios</subject><subject>Risk aversion</subject><subject>Skewness</subject><subject>Skewness and kurtosis</subject><subject>Statistics for Business</subject><subject>Stocks</subject><subject>Utility functions</subject><issn>1435-8921</issn><issn>0377-7332</issn><issn>1435-8921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AUEoeK5OmqZJj7r4Dxa96DnE7GQ3y7apSRfZb29qhdWLpxlmfu8N8wg5p3BFAcR1BKCS5lBADrSmIocDMqEl47msC3r4qz8mJzGuAYBJXk7I7bNvOx10g31wJut86K3fOJ-htc44bM0ua1DHbcAG2z77dP0qW7nlCkPW-GEUT8mR1ZuIZz91St7u715nj_n85eFpdjPPTSl4n3NcSG00ClObisOiliC10NaWVr5jLQvBKlFqirLWaHj6Aod1ApBJZgSbksvRtwv-Y4uxV2u_DW06qQpeFaySrOKJKkbKBB9jQKu64BoddoqCGrJSY1YqZaW-s1KQRNkoQuNbF_cSIQA4lbxKCBuRmJbtEsP--r_GF3-MhxJ7H1QhJSsr9gUzAYIC</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Krüger, Jens J</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OT2</scope><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Nonparametric portfolio efficiency measurement with higher moments</title><author>Krüger, Jens J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5ed8acae7c9c650d9808a7aff4f8be98273674a1e89aec5191ea7afaffe383c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Data envelopment analysis</topic><topic>Directional distance functions</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Efficiency</topic><topic>Expected utility</topic><topic>Finance</topic><topic>Insurance</topic><topic>Kurtosis</topic><topic>Linear programming</topic><topic>Management</topic><topic>Measurement</topic><topic>Nonparametric statistics</topic><topic>Portfolio choice</topic><topic>Portfolio performance</topic><topic>Portfolios</topic><topic>Risk aversion</topic><topic>Skewness</topic><topic>Skewness and kurtosis</topic><topic>Statistics for Business</topic><topic>Stocks</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krüger, Jens J</creatorcontrib><collection>EconStor</collection><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Empirical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krüger, Jens J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric portfolio efficiency measurement with higher moments</atitle><jtitle>Empirical economics</jtitle><stitle>Empir Econ</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>61</volume><issue>3</issue><spage>1435</spage><epage>1459</epage><pages>1435-1459</pages><issn>1435-8921</issn><issn>0377-7332</issn><eissn>1435-8921</eissn><abstract>The paper considers a nonparametric approach to determine portfolio efficiency using specific directions toward the portfolio frontier function. This approach allows for a straightforward incorporation of higher moments of the returns distribution beyond mean and variance. The nonparametric approach is extended by the computation of optimal directions endogenously by maximizing the distance toward the portfolio frontier as a novel methodological feature. An empirical application to Fama–French portfolios demonstrates the applicability of the nonparametric approach. The results show that the optimal directions to the frontier depend on the portfolio considered as well as on the period for which the moments are estimated. Skewness in particular plays a role in determining the optimal direction, whereas kurtosis seems to be less crucial.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00181-020-01917-0</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-8921 |
ispartof | Empirical economics, 2021-09, Vol.61 (3), p.1435-1459 |
issn | 1435-8921 0377-7332 1435-8921 |
language | eng |
recordid | cdi_proquest_journals_2562368365 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Approximation Data envelopment analysis Directional distance functions Econometrics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Efficiency Expected utility Finance Insurance Kurtosis Linear programming Management Measurement Nonparametric statistics Portfolio choice Portfolio performance Portfolios Risk aversion Skewness Skewness and kurtosis Statistics for Business Stocks Utility functions |
title | Nonparametric portfolio efficiency measurement with higher moments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20portfolio%20efficiency%20measurement%20with%20higher%20moments&rft.jtitle=Empirical%20economics&rft.au=Kr%C3%BCger,%20Jens%20J&rft.date=2021-09-01&rft.volume=61&rft.issue=3&rft.spage=1435&rft.epage=1459&rft.pages=1435-1459&rft.issn=1435-8921&rft.eissn=1435-8921&rft_id=info:doi/10.1007/s00181-020-01917-0&rft_dat=%3Cproquest_cross%3E2562368365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562368365&rft_id=info:pmid/&rfr_iscdi=true |