Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification
Device authentication is essential for securing Internet of things. Radio frequency fingerprint identification (RFFI) is an emerging technique that exploits intrinsic and unique hardware impairments as the device identifier. The existing RFFI literature focuses on experimental exploration but compre...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2021, Vol.16, p.3974-3987 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3987 |
---|---|
container_issue | |
container_start_page | 3974 |
container_title | IEEE transactions on information forensics and security |
container_volume | 16 |
creator | Zhang, Junqing Woods, Roger Sandell, Magnus Valkama, Mikko Marshall, Alan Cavallaro, Joseph |
description | Device authentication is essential for securing Internet of things. Radio frequency fingerprint identification (RFFI) is an emerging technique that exploits intrinsic and unique hardware impairments as the device identifier. The existing RFFI literature focuses on experimental exploration but comprehensive modelling is missing. This paper systematically models impairments of transmitter and receiver in narrowband systems and carries out extensive experiments and simulations to evaluate their effects on RFFI. The modelled impairments include oscillator imperfections, imbalance of inphase (I) and quadrature (Q) branches of mixers and power amplifier (PA) nonlinearity. We then propose a convolutional neural network-based RFFI protocol. We carry out experimental measurements over three months and demonstrate that oscillator imperfections are not suitable for RFFI due to their unpredictable time variation caused by temperature change. Our simulation results show that our protocol can classify 50 and 200 devices with uniformly and randomly distributed IQ imbalances and PA nonlinearities with high accuracy, namely 99% and 89%, respectively. We also show that the RFFI has some tolerance on different receiver imbalances during training and classification. Specifically, the accuracy is shown to degrade less than 20% when the residual receiver's gain and phase imbalances are small. Based on the experimental and simulation results, we made recommendations for designing a robust RFFI protocol, namely compensate carrier frequency offset and calibrate IQ imbalances of receivers. |
doi_str_mv | 10.1109/TIFS.2021.3088008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2562319240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9450821</ieee_id><sourcerecordid>2562319240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-2ef8ea53df8b8c146b7db7d55aa6a99402d814a396e71591965ec25ee79658383</originalsourceid><addsrcrecordid>eNo9UNFKAzEQDKJgrX6A-BLw1avZ5JImj1I8LVQFW59DercnV66XmpxI_94cLYWFHYaZXWYIuQU2AWDmcTUvlhPOOEwE05oxfUZGIKXKVOLOTxjEJbmKccNYnoPSI2I_XdV4WgT8-cWu3NOi6b4x7ELT9XReYdc3dVO6vvEdrX2g7y4E_7d2XUWX-9jjNj7QN19h2yYfHehZ62I8ma7JRe3aiDfHPSZfxfNq9potPl7ms6dFVgqh-oxjrdFJUdV6rUvI1XpapZHSOeWMyRmvNOROGIVTkAaMklhyiThNSAstxuT-cHcXfEoSe7vxv6FLLy2XigswPGdJBQdVGXyMAWubgm5d2FtgdujRDj3aoUd77DF57g6eBhFPepNLpjmIfyBcbzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562319240</pqid></control><display><type>article</type><title>Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification</title><source>IEEE Electronic Library Online</source><creator>Zhang, Junqing ; Woods, Roger ; Sandell, Magnus ; Valkama, Mikko ; Marshall, Alan ; Cavallaro, Joseph</creator><creatorcontrib>Zhang, Junqing ; Woods, Roger ; Sandell, Magnus ; Valkama, Mikko ; Marshall, Alan ; Cavallaro, Joseph</creatorcontrib><description>Device authentication is essential for securing Internet of things. Radio frequency fingerprint identification (RFFI) is an emerging technique that exploits intrinsic and unique hardware impairments as the device identifier. The existing RFFI literature focuses on experimental exploration but comprehensive modelling is missing. This paper systematically models impairments of transmitter and receiver in narrowband systems and carries out extensive experiments and simulations to evaluate their effects on RFFI. The modelled impairments include oscillator imperfections, imbalance of inphase (I) and quadrature (Q) branches of mixers and power amplifier (PA) nonlinearity. We then propose a convolutional neural network-based RFFI protocol. We carry out experimental measurements over three months and demonstrate that oscillator imperfections are not suitable for RFFI due to their unpredictable time variation caused by temperature change. Our simulation results show that our protocol can classify 50 and 200 devices with uniformly and randomly distributed IQ imbalances and PA nonlinearities with high accuracy, namely 99% and 89%, respectively. We also show that the RFFI has some tolerance on different receiver imbalances during training and classification. Specifically, the accuracy is shown to degrade less than 20% when the residual receiver's gain and phase imbalances are small. Based on the experimental and simulation results, we made recommendations for designing a robust RFFI protocol, namely compensate carrier frequency offset and calibrate IQ imbalances of receivers.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2021.3088008</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Carrier frequencies ; Classification ; convolutional neural network ; Defects ; Device authentication ; Fingerprints ; Internet of Things ; Mixers ; Modelling ; Narrowband ; Nonlinearity ; Power amplifiers ; Protocols ; Quadratures ; Radio frequency ; radio frequency fingerprint identification ; Radio transmitters ; Receivers ; Receivers & amplifiers ; RF impairment ; Simulation ; Temperature effects ; Training</subject><ispartof>IEEE transactions on information forensics and security, 2021, Vol.16, p.3974-3987</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-2ef8ea53df8b8c146b7db7d55aa6a99402d814a396e71591965ec25ee79658383</citedby><cites>FETCH-LOGICAL-c336t-2ef8ea53df8b8c146b7db7d55aa6a99402d814a396e71591965ec25ee79658383</cites><orcidid>0000-0003-0361-0800 ; 0000-0002-9841-1806 ; 0000-0002-3502-2926 ; 0000-0001-8625-5394 ; 0000-0001-6201-4270 ; 0000-0002-8058-5242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9450821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9450821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Junqing</creatorcontrib><creatorcontrib>Woods, Roger</creatorcontrib><creatorcontrib>Sandell, Magnus</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><creatorcontrib>Marshall, Alan</creatorcontrib><creatorcontrib>Cavallaro, Joseph</creatorcontrib><title>Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Device authentication is essential for securing Internet of things. Radio frequency fingerprint identification (RFFI) is an emerging technique that exploits intrinsic and unique hardware impairments as the device identifier. The existing RFFI literature focuses on experimental exploration but comprehensive modelling is missing. This paper systematically models impairments of transmitter and receiver in narrowband systems and carries out extensive experiments and simulations to evaluate their effects on RFFI. The modelled impairments include oscillator imperfections, imbalance of inphase (I) and quadrature (Q) branches of mixers and power amplifier (PA) nonlinearity. We then propose a convolutional neural network-based RFFI protocol. We carry out experimental measurements over three months and demonstrate that oscillator imperfections are not suitable for RFFI due to their unpredictable time variation caused by temperature change. Our simulation results show that our protocol can classify 50 and 200 devices with uniformly and randomly distributed IQ imbalances and PA nonlinearities with high accuracy, namely 99% and 89%, respectively. We also show that the RFFI has some tolerance on different receiver imbalances during training and classification. Specifically, the accuracy is shown to degrade less than 20% when the residual receiver's gain and phase imbalances are small. Based on the experimental and simulation results, we made recommendations for designing a robust RFFI protocol, namely compensate carrier frequency offset and calibrate IQ imbalances of receivers.</description><subject>Artificial neural networks</subject><subject>Carrier frequencies</subject><subject>Classification</subject><subject>convolutional neural network</subject><subject>Defects</subject><subject>Device authentication</subject><subject>Fingerprints</subject><subject>Internet of Things</subject><subject>Mixers</subject><subject>Modelling</subject><subject>Narrowband</subject><subject>Nonlinearity</subject><subject>Power amplifiers</subject><subject>Protocols</subject><subject>Quadratures</subject><subject>Radio frequency</subject><subject>radio frequency fingerprint identification</subject><subject>Radio transmitters</subject><subject>Receivers</subject><subject>Receivers & amplifiers</subject><subject>RF impairment</subject><subject>Simulation</subject><subject>Temperature effects</subject><subject>Training</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UNFKAzEQDKJgrX6A-BLw1avZ5JImj1I8LVQFW59DercnV66XmpxI_94cLYWFHYaZXWYIuQU2AWDmcTUvlhPOOEwE05oxfUZGIKXKVOLOTxjEJbmKccNYnoPSI2I_XdV4WgT8-cWu3NOi6b4x7ELT9XReYdc3dVO6vvEdrX2g7y4E_7d2XUWX-9jjNj7QN19h2yYfHehZ62I8ma7JRe3aiDfHPSZfxfNq9potPl7ms6dFVgqh-oxjrdFJUdV6rUvI1XpapZHSOeWMyRmvNOROGIVTkAaMklhyiThNSAstxuT-cHcXfEoSe7vxv6FLLy2XigswPGdJBQdVGXyMAWubgm5d2FtgdujRDj3aoUd77DF57g6eBhFPepNLpjmIfyBcbzg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Junqing</creator><creator>Woods, Roger</creator><creator>Sandell, Magnus</creator><creator>Valkama, Mikko</creator><creator>Marshall, Alan</creator><creator>Cavallaro, Joseph</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0361-0800</orcidid><orcidid>https://orcid.org/0000-0002-9841-1806</orcidid><orcidid>https://orcid.org/0000-0002-3502-2926</orcidid><orcidid>https://orcid.org/0000-0001-8625-5394</orcidid><orcidid>https://orcid.org/0000-0001-6201-4270</orcidid><orcidid>https://orcid.org/0000-0002-8058-5242</orcidid></search><sort><creationdate>2021</creationdate><title>Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification</title><author>Zhang, Junqing ; Woods, Roger ; Sandell, Magnus ; Valkama, Mikko ; Marshall, Alan ; Cavallaro, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-2ef8ea53df8b8c146b7db7d55aa6a99402d814a396e71591965ec25ee79658383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Carrier frequencies</topic><topic>Classification</topic><topic>convolutional neural network</topic><topic>Defects</topic><topic>Device authentication</topic><topic>Fingerprints</topic><topic>Internet of Things</topic><topic>Mixers</topic><topic>Modelling</topic><topic>Narrowband</topic><topic>Nonlinearity</topic><topic>Power amplifiers</topic><topic>Protocols</topic><topic>Quadratures</topic><topic>Radio frequency</topic><topic>radio frequency fingerprint identification</topic><topic>Radio transmitters</topic><topic>Receivers</topic><topic>Receivers & amplifiers</topic><topic>RF impairment</topic><topic>Simulation</topic><topic>Temperature effects</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Junqing</creatorcontrib><creatorcontrib>Woods, Roger</creatorcontrib><creatorcontrib>Sandell, Magnus</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><creatorcontrib>Marshall, Alan</creatorcontrib><creatorcontrib>Cavallaro, Joseph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Junqing</au><au>Woods, Roger</au><au>Sandell, Magnus</au><au>Valkama, Mikko</au><au>Marshall, Alan</au><au>Cavallaro, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2021</date><risdate>2021</risdate><volume>16</volume><spage>3974</spage><epage>3987</epage><pages>3974-3987</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Device authentication is essential for securing Internet of things. Radio frequency fingerprint identification (RFFI) is an emerging technique that exploits intrinsic and unique hardware impairments as the device identifier. The existing RFFI literature focuses on experimental exploration but comprehensive modelling is missing. This paper systematically models impairments of transmitter and receiver in narrowband systems and carries out extensive experiments and simulations to evaluate their effects on RFFI. The modelled impairments include oscillator imperfections, imbalance of inphase (I) and quadrature (Q) branches of mixers and power amplifier (PA) nonlinearity. We then propose a convolutional neural network-based RFFI protocol. We carry out experimental measurements over three months and demonstrate that oscillator imperfections are not suitable for RFFI due to their unpredictable time variation caused by temperature change. Our simulation results show that our protocol can classify 50 and 200 devices with uniformly and randomly distributed IQ imbalances and PA nonlinearities with high accuracy, namely 99% and 89%, respectively. We also show that the RFFI has some tolerance on different receiver imbalances during training and classification. Specifically, the accuracy is shown to degrade less than 20% when the residual receiver's gain and phase imbalances are small. Based on the experimental and simulation results, we made recommendations for designing a robust RFFI protocol, namely compensate carrier frequency offset and calibrate IQ imbalances of receivers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2021.3088008</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0361-0800</orcidid><orcidid>https://orcid.org/0000-0002-9841-1806</orcidid><orcidid>https://orcid.org/0000-0002-3502-2926</orcidid><orcidid>https://orcid.org/0000-0001-8625-5394</orcidid><orcidid>https://orcid.org/0000-0001-6201-4270</orcidid><orcidid>https://orcid.org/0000-0002-8058-5242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2021, Vol.16, p.3974-3987 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_proquest_journals_2562319240 |
source | IEEE Electronic Library Online |
subjects | Artificial neural networks Carrier frequencies Classification convolutional neural network Defects Device authentication Fingerprints Internet of Things Mixers Modelling Narrowband Nonlinearity Power amplifiers Protocols Quadratures Radio frequency radio frequency fingerprint identification Radio transmitters Receivers Receivers & amplifiers RF impairment Simulation Temperature effects Training |
title | Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radio%20Frequency%20Fingerprint%20Identification%20for%20Narrowband%20Systems,%20Modelling%20and%20Classification&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Zhang,%20Junqing&rft.date=2021&rft.volume=16&rft.spage=3974&rft.epage=3987&rft.pages=3974-3987&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2021.3088008&rft_dat=%3Cproquest_RIE%3E2562319240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562319240&rft_id=info:pmid/&rft_ieee_id=9450821&rfr_iscdi=true |