Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach

Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.113246-113257
Hauptverfasser: Sattar, Neelum Yousaf, Kausar, Zareena, Usama, Syed Ali, Naseer, Noman, Farooq, Umer, Abdullah, Ahmed, Hussain, Syed Zahid, Khan, Umar Shahbaz, Khan, Haroon, Mirtaheri, Peyman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113257
container_issue
container_start_page 113246
container_title IEEE access
container_volume 9
creator Sattar, Neelum Yousaf
Kausar, Zareena
Usama, Syed Ali
Naseer, Noman
Farooq, Umer
Abdullah, Ahmed
Hussain, Syed Zahid
Khan, Umar Shahbaz
Khan, Haroon
Mirtaheri, Peyman
description Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have a transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses.
doi_str_mv 10.1109/ACCESS.2021.3099973
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562316465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9495771</ieee_id><doaj_id>oai_doaj_org_article_cb66e6a572204651af000f26257ada8d</doaj_id><sourcerecordid>2562316465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-adf0caa8aaac7736fde9330b5323e293d4d67ece5b869f259d250648a4579c3d3</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRUNRf0E3AdWsek2TibhiqFuoDq1vDbR42pc7UZLrovzd1RLybXA73nCT3K4oRwRNCsLqum2a6WEwopmTCsFJKsqPijBKhxowzcfyvPy0uU1rjXFWWuDwr3qftCloT2g_UbCCl4IOBPnQtqo3ZRTB71Hn0GqFNq92ni7BBz7FL_cqlkG5Qje73yxgsStOHOwStRf5x9rJA9XYbOzCri-LEwya5y9_zvHi7nb429-P5092sqedjU-KqH4P12ABUAGCkZMJbpxjDS84oc1QxW1ohnXF8WQnlKVeWcizKCkoulWGWnRezIdd2sNbbGD4h7nUHQf8IXfzQEPtgNk6bpRBOAJeU4lJwAj6vw1NBuQQL1SHrasjKX_jaudTrdbeLbX6-plxQRkS25Sk2TJm8jhSd_7uVYH3gogcu-sBF_3LJrtHgCs65P4cqMwtJ2DciYIg6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562316465</pqid></control><display><type>article</type><title>Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sattar, Neelum Yousaf ; Kausar, Zareena ; Usama, Syed Ali ; Naseer, Noman ; Farooq, Umer ; Abdullah, Ahmed ; Hussain, Syed Zahid ; Khan, Umar Shahbaz ; Khan, Haroon ; Mirtaheri, Peyman</creator><creatorcontrib>Sattar, Neelum Yousaf ; Kausar, Zareena ; Usama, Syed Ali ; Naseer, Noman ; Farooq, Umer ; Abdullah, Ahmed ; Hussain, Syed Zahid ; Khan, Umar Shahbaz ; Khan, Haroon ; Mirtaheri, Peyman</creatorcontrib><description>Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have a transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3099973</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Amputation ; Brain ; Classification ; Classification accuracy ; Elbow ; Elbow (anatomy) ; Electrodes ; Electromyography ; Feasibility studies ; fNIRS ; Hand (anatomy) ; Hemodynamics ; hybrid brain-machine interface ; Infrared spectra ; Man-machine interfaces ; Medical imaging ; Muscles ; Myoelectricity ; Near infrared radiation ; Prostheses ; Prosthetics ; sEMG ; Task analysis ; transhumeral prosthesis ; Wrist</subject><ispartof>IEEE access, 2021, Vol.9, p.113246-113257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-adf0caa8aaac7736fde9330b5323e293d4d67ece5b869f259d250648a4579c3d3</citedby><cites>FETCH-LOGICAL-c408t-adf0caa8aaac7736fde9330b5323e293d4d67ece5b869f259d250648a4579c3d3</cites><orcidid>0000-0003-0228-3959 ; 0000-0002-5563-8920 ; 0000-0002-2680-6403 ; 0000-0002-5263-1408 ; 0000-0001-6436-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9495771$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Sattar, Neelum Yousaf</creatorcontrib><creatorcontrib>Kausar, Zareena</creatorcontrib><creatorcontrib>Usama, Syed Ali</creatorcontrib><creatorcontrib>Naseer, Noman</creatorcontrib><creatorcontrib>Farooq, Umer</creatorcontrib><creatorcontrib>Abdullah, Ahmed</creatorcontrib><creatorcontrib>Hussain, Syed Zahid</creatorcontrib><creatorcontrib>Khan, Umar Shahbaz</creatorcontrib><creatorcontrib>Khan, Haroon</creatorcontrib><creatorcontrib>Mirtaheri, Peyman</creatorcontrib><title>Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have a transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses.</description><subject>Accuracy</subject><subject>Amputation</subject><subject>Brain</subject><subject>Classification</subject><subject>Classification accuracy</subject><subject>Elbow</subject><subject>Elbow (anatomy)</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Feasibility studies</subject><subject>fNIRS</subject><subject>Hand (anatomy)</subject><subject>Hemodynamics</subject><subject>hybrid brain-machine interface</subject><subject>Infrared spectra</subject><subject>Man-machine interfaces</subject><subject>Medical imaging</subject><subject>Muscles</subject><subject>Myoelectricity</subject><subject>Near infrared radiation</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>sEMG</subject><subject>Task analysis</subject><subject>transhumeral prosthesis</subject><subject>Wrist</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRUNRf0E3AdWsek2TibhiqFuoDq1vDbR42pc7UZLrovzd1RLybXA73nCT3K4oRwRNCsLqum2a6WEwopmTCsFJKsqPijBKhxowzcfyvPy0uU1rjXFWWuDwr3qftCloT2g_UbCCl4IOBPnQtqo3ZRTB71Hn0GqFNq92ni7BBz7FL_cqlkG5Qje73yxgsStOHOwStRf5x9rJA9XYbOzCri-LEwya5y9_zvHi7nb429-P5092sqedjU-KqH4P12ABUAGCkZMJbpxjDS84oc1QxW1ohnXF8WQnlKVeWcizKCkoulWGWnRezIdd2sNbbGD4h7nUHQf8IXfzQEPtgNk6bpRBOAJeU4lJwAj6vw1NBuQQL1SHrasjKX_jaudTrdbeLbX6-plxQRkS25Sk2TJm8jhSd_7uVYH3gogcu-sBF_3LJrtHgCs65P4cqMwtJ2DciYIg6</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sattar, Neelum Yousaf</creator><creator>Kausar, Zareena</creator><creator>Usama, Syed Ali</creator><creator>Naseer, Noman</creator><creator>Farooq, Umer</creator><creator>Abdullah, Ahmed</creator><creator>Hussain, Syed Zahid</creator><creator>Khan, Umar Shahbaz</creator><creator>Khan, Haroon</creator><creator>Mirtaheri, Peyman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0228-3959</orcidid><orcidid>https://orcid.org/0000-0002-5563-8920</orcidid><orcidid>https://orcid.org/0000-0002-2680-6403</orcidid><orcidid>https://orcid.org/0000-0002-5263-1408</orcidid><orcidid>https://orcid.org/0000-0001-6436-2682</orcidid></search><sort><creationdate>2021</creationdate><title>Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach</title><author>Sattar, Neelum Yousaf ; Kausar, Zareena ; Usama, Syed Ali ; Naseer, Noman ; Farooq, Umer ; Abdullah, Ahmed ; Hussain, Syed Zahid ; Khan, Umar Shahbaz ; Khan, Haroon ; Mirtaheri, Peyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-adf0caa8aaac7736fde9330b5323e293d4d67ece5b869f259d250648a4579c3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Amputation</topic><topic>Brain</topic><topic>Classification</topic><topic>Classification accuracy</topic><topic>Elbow</topic><topic>Elbow (anatomy)</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Feasibility studies</topic><topic>fNIRS</topic><topic>Hand (anatomy)</topic><topic>Hemodynamics</topic><topic>hybrid brain-machine interface</topic><topic>Infrared spectra</topic><topic>Man-machine interfaces</topic><topic>Medical imaging</topic><topic>Muscles</topic><topic>Myoelectricity</topic><topic>Near infrared radiation</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>sEMG</topic><topic>Task analysis</topic><topic>transhumeral prosthesis</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattar, Neelum Yousaf</creatorcontrib><creatorcontrib>Kausar, Zareena</creatorcontrib><creatorcontrib>Usama, Syed Ali</creatorcontrib><creatorcontrib>Naseer, Noman</creatorcontrib><creatorcontrib>Farooq, Umer</creatorcontrib><creatorcontrib>Abdullah, Ahmed</creatorcontrib><creatorcontrib>Hussain, Syed Zahid</creatorcontrib><creatorcontrib>Khan, Umar Shahbaz</creatorcontrib><creatorcontrib>Khan, Haroon</creatorcontrib><creatorcontrib>Mirtaheri, Peyman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattar, Neelum Yousaf</au><au>Kausar, Zareena</au><au>Usama, Syed Ali</au><au>Naseer, Noman</au><au>Farooq, Umer</au><au>Abdullah, Ahmed</au><au>Hussain, Syed Zahid</au><au>Khan, Umar Shahbaz</au><au>Khan, Haroon</au><au>Mirtaheri, Peyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>113246</spage><epage>113257</epage><pages>113246-113257</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have a transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3099973</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0228-3959</orcidid><orcidid>https://orcid.org/0000-0002-5563-8920</orcidid><orcidid>https://orcid.org/0000-0002-2680-6403</orcidid><orcidid>https://orcid.org/0000-0002-5263-1408</orcidid><orcidid>https://orcid.org/0000-0001-6436-2682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.113246-113257
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2562316465
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Amputation
Brain
Classification
Classification accuracy
Elbow
Elbow (anatomy)
Electrodes
Electromyography
Feasibility studies
fNIRS
Hand (anatomy)
Hemodynamics
hybrid brain-machine interface
Infrared spectra
Man-machine interfaces
Medical imaging
Muscles
Myoelectricity
Near infrared radiation
Prostheses
Prosthetics
sEMG
Task analysis
transhumeral prosthesis
Wrist
title Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Classification%20Accuracy%20of%20Transhumeral%20Prosthesis:%20A%20Hybrid%20sEMG%20and%20fNIRS%20Approach&rft.jtitle=IEEE%20access&rft.au=Sattar,%20Neelum%20Yousaf&rft.date=2021&rft.volume=9&rft.spage=113246&rft.epage=113257&rft.pages=113246-113257&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3099973&rft_dat=%3Cproquest_cross%3E2562316465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562316465&rft_id=info:pmid/&rft_ieee_id=9495771&rft_doaj_id=oai_doaj_org_article_cb66e6a572204651af000f26257ada8d&rfr_iscdi=true