Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach
Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to ove...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.113246-113257 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113257 |
---|---|
container_issue | |
container_start_page | 113246 |
container_title | IEEE access |
container_volume | 9 |
creator | Sattar, Neelum Yousaf Kausar, Zareena Usama, Syed Ali Naseer, Noman Farooq, Umer Abdullah, Ahmed Hussain, Syed Zahid Khan, Umar Shahbaz Khan, Haroon Mirtaheri, Peyman |
description | Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have a transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses. |
doi_str_mv | 10.1109/ACCESS.2021.3099973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562316465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9495771</ieee_id><doaj_id>oai_doaj_org_article_cb66e6a572204651af000f26257ada8d</doaj_id><sourcerecordid>2562316465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-adf0caa8aaac7736fde9330b5323e293d4d67ece5b869f259d250648a4579c3d3</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRUNRf0E3AdWsek2TibhiqFuoDq1vDbR42pc7UZLrovzd1RLybXA73nCT3K4oRwRNCsLqum2a6WEwopmTCsFJKsqPijBKhxowzcfyvPy0uU1rjXFWWuDwr3qftCloT2g_UbCCl4IOBPnQtqo3ZRTB71Hn0GqFNq92ni7BBz7FL_cqlkG5Qje73yxgsStOHOwStRf5x9rJA9XYbOzCri-LEwya5y9_zvHi7nb429-P5092sqedjU-KqH4P12ABUAGCkZMJbpxjDS84oc1QxW1ohnXF8WQnlKVeWcizKCkoulWGWnRezIdd2sNbbGD4h7nUHQf8IXfzQEPtgNk6bpRBOAJeU4lJwAj6vw1NBuQQL1SHrasjKX_jaudTrdbeLbX6-plxQRkS25Sk2TJm8jhSd_7uVYH3gogcu-sBF_3LJrtHgCs65P4cqMwtJ2DciYIg6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562316465</pqid></control><display><type>article</type><title>Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sattar, Neelum Yousaf ; Kausar, Zareena ; Usama, Syed Ali ; Naseer, Noman ; Farooq, Umer ; Abdullah, Ahmed ; Hussain, Syed Zahid ; Khan, Umar Shahbaz ; Khan, Haroon ; Mirtaheri, Peyman</creator><creatorcontrib>Sattar, Neelum Yousaf ; Kausar, Zareena ; Usama, Syed Ali ; Naseer, Noman ; Farooq, Umer ; Abdullah, Ahmed ; Hussain, Syed Zahid ; Khan, Umar Shahbaz ; Khan, Haroon ; Mirtaheri, Peyman</creatorcontrib><description>Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have a transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3099973</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Amputation ; Brain ; Classification ; Classification accuracy ; Elbow ; Elbow (anatomy) ; Electrodes ; Electromyography ; Feasibility studies ; fNIRS ; Hand (anatomy) ; Hemodynamics ; hybrid brain-machine interface ; Infrared spectra ; Man-machine interfaces ; Medical imaging ; Muscles ; Myoelectricity ; Near infrared radiation ; Prostheses ; Prosthetics ; sEMG ; Task analysis ; transhumeral prosthesis ; Wrist</subject><ispartof>IEEE access, 2021, Vol.9, p.113246-113257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-adf0caa8aaac7736fde9330b5323e293d4d67ece5b869f259d250648a4579c3d3</citedby><cites>FETCH-LOGICAL-c408t-adf0caa8aaac7736fde9330b5323e293d4d67ece5b869f259d250648a4579c3d3</cites><orcidid>0000-0003-0228-3959 ; 0000-0002-5563-8920 ; 0000-0002-2680-6403 ; 0000-0002-5263-1408 ; 0000-0001-6436-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9495771$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Sattar, Neelum Yousaf</creatorcontrib><creatorcontrib>Kausar, Zareena</creatorcontrib><creatorcontrib>Usama, Syed Ali</creatorcontrib><creatorcontrib>Naseer, Noman</creatorcontrib><creatorcontrib>Farooq, Umer</creatorcontrib><creatorcontrib>Abdullah, Ahmed</creatorcontrib><creatorcontrib>Hussain, Syed Zahid</creatorcontrib><creatorcontrib>Khan, Umar Shahbaz</creatorcontrib><creatorcontrib>Khan, Haroon</creatorcontrib><creatorcontrib>Mirtaheri, Peyman</creatorcontrib><title>Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have a transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses.</description><subject>Accuracy</subject><subject>Amputation</subject><subject>Brain</subject><subject>Classification</subject><subject>Classification accuracy</subject><subject>Elbow</subject><subject>Elbow (anatomy)</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Feasibility studies</subject><subject>fNIRS</subject><subject>Hand (anatomy)</subject><subject>Hemodynamics</subject><subject>hybrid brain-machine interface</subject><subject>Infrared spectra</subject><subject>Man-machine interfaces</subject><subject>Medical imaging</subject><subject>Muscles</subject><subject>Myoelectricity</subject><subject>Near infrared radiation</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>sEMG</subject><subject>Task analysis</subject><subject>transhumeral prosthesis</subject><subject>Wrist</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRUNRf0E3AdWsek2TibhiqFuoDq1vDbR42pc7UZLrovzd1RLybXA73nCT3K4oRwRNCsLqum2a6WEwopmTCsFJKsqPijBKhxowzcfyvPy0uU1rjXFWWuDwr3qftCloT2g_UbCCl4IOBPnQtqo3ZRTB71Hn0GqFNq92ni7BBz7FL_cqlkG5Qje73yxgsStOHOwStRf5x9rJA9XYbOzCri-LEwya5y9_zvHi7nb429-P5092sqedjU-KqH4P12ABUAGCkZMJbpxjDS84oc1QxW1ohnXF8WQnlKVeWcizKCkoulWGWnRezIdd2sNbbGD4h7nUHQf8IXfzQEPtgNk6bpRBOAJeU4lJwAj6vw1NBuQQL1SHrasjKX_jaudTrdbeLbX6-plxQRkS25Sk2TJm8jhSd_7uVYH3gogcu-sBF_3LJrtHgCs65P4cqMwtJ2DciYIg6</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sattar, Neelum Yousaf</creator><creator>Kausar, Zareena</creator><creator>Usama, Syed Ali</creator><creator>Naseer, Noman</creator><creator>Farooq, Umer</creator><creator>Abdullah, Ahmed</creator><creator>Hussain, Syed Zahid</creator><creator>Khan, Umar Shahbaz</creator><creator>Khan, Haroon</creator><creator>Mirtaheri, Peyman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0228-3959</orcidid><orcidid>https://orcid.org/0000-0002-5563-8920</orcidid><orcidid>https://orcid.org/0000-0002-2680-6403</orcidid><orcidid>https://orcid.org/0000-0002-5263-1408</orcidid><orcidid>https://orcid.org/0000-0001-6436-2682</orcidid></search><sort><creationdate>2021</creationdate><title>Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach</title><author>Sattar, Neelum Yousaf ; Kausar, Zareena ; Usama, Syed Ali ; Naseer, Noman ; Farooq, Umer ; Abdullah, Ahmed ; Hussain, Syed Zahid ; Khan, Umar Shahbaz ; Khan, Haroon ; Mirtaheri, Peyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-adf0caa8aaac7736fde9330b5323e293d4d67ece5b869f259d250648a4579c3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Amputation</topic><topic>Brain</topic><topic>Classification</topic><topic>Classification accuracy</topic><topic>Elbow</topic><topic>Elbow (anatomy)</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Feasibility studies</topic><topic>fNIRS</topic><topic>Hand (anatomy)</topic><topic>Hemodynamics</topic><topic>hybrid brain-machine interface</topic><topic>Infrared spectra</topic><topic>Man-machine interfaces</topic><topic>Medical imaging</topic><topic>Muscles</topic><topic>Myoelectricity</topic><topic>Near infrared radiation</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>sEMG</topic><topic>Task analysis</topic><topic>transhumeral prosthesis</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattar, Neelum Yousaf</creatorcontrib><creatorcontrib>Kausar, Zareena</creatorcontrib><creatorcontrib>Usama, Syed Ali</creatorcontrib><creatorcontrib>Naseer, Noman</creatorcontrib><creatorcontrib>Farooq, Umer</creatorcontrib><creatorcontrib>Abdullah, Ahmed</creatorcontrib><creatorcontrib>Hussain, Syed Zahid</creatorcontrib><creatorcontrib>Khan, Umar Shahbaz</creatorcontrib><creatorcontrib>Khan, Haroon</creatorcontrib><creatorcontrib>Mirtaheri, Peyman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattar, Neelum Yousaf</au><au>Kausar, Zareena</au><au>Usama, Syed Ali</au><au>Naseer, Noman</au><au>Farooq, Umer</au><au>Abdullah, Ahmed</au><au>Hussain, Syed Zahid</au><au>Khan, Umar Shahbaz</au><au>Khan, Haroon</au><au>Mirtaheri, Peyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>113246</spage><epage>113257</epage><pages>113246-113257</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of an existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have a transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas, fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3099973</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0228-3959</orcidid><orcidid>https://orcid.org/0000-0002-5563-8920</orcidid><orcidid>https://orcid.org/0000-0002-2680-6403</orcidid><orcidid>https://orcid.org/0000-0002-5263-1408</orcidid><orcidid>https://orcid.org/0000-0001-6436-2682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.113246-113257 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2562316465 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Amputation Brain Classification Classification accuracy Elbow Elbow (anatomy) Electrodes Electromyography Feasibility studies fNIRS Hand (anatomy) Hemodynamics hybrid brain-machine interface Infrared spectra Man-machine interfaces Medical imaging Muscles Myoelectricity Near infrared radiation Prostheses Prosthetics sEMG Task analysis transhumeral prosthesis Wrist |
title | Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Classification%20Accuracy%20of%20Transhumeral%20Prosthesis:%20A%20Hybrid%20sEMG%20and%20fNIRS%20Approach&rft.jtitle=IEEE%20access&rft.au=Sattar,%20Neelum%20Yousaf&rft.date=2021&rft.volume=9&rft.spage=113246&rft.epage=113257&rft.pages=113246-113257&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3099973&rft_dat=%3Cproquest_cross%3E2562316465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562316465&rft_id=info:pmid/&rft_ieee_id=9495771&rft_doaj_id=oai_doaj_org_article_cb66e6a572204651af000f26257ada8d&rfr_iscdi=true |