Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique

Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2021-08, Vol.11 (8), p.1223-1234
Hauptverfasser: Shankaran, Gokul V., Dogruoz, Mehmet Baris, Abarham, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1234
container_issue 8
container_start_page 1223
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 11
creator Shankaran, Gokul V.
Dogruoz, Mehmet Baris
Abarham, Mehdi
description Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce accurate results if the time dependence of the power cycles and thermal BCs is small. Ideally, transient thermal analyses with actual time-dependent BCs and power cycles should be performed to determine the steady-state behavior. While being less overwhelming compared to laboratory experiments, fully time-dependent computational fluid dynamics (CFD) analysis still requires a large amount of CPU time. In order to overcome this large computational cost, several approximate models, such as resistor-capacitor ( R - C ) thermal network approaches, have been developed. Although reasonably accurate, these models require rigorous curve-fitting effort followed by an optimization process, which only makes them practical for relatively simple systems. The present study builds a state-space model applicable to heat transfer problems and makes comparisons with the R - C networks. The state-space model is later applied to determine the transient thermal behavior of a complex system, namely, a multidie SOIC chip over a printed circuit board (PCB), with a significant reduction in CPU time and no compromise on the accuracy. Finally, as a demonstration of systemic thermal design, an optimization exercise is performed on the above state-space model, in which the power cycles on individual die elements are controlled to limit the maximum temperature on the package die.
doi_str_mv 10.1109/TCPMT.2021.3089982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2562316432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9459140</ieee_id><sourcerecordid>2562316432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-9f4cc0193aa145cc9684d1d58086d820624161f475bf1707ddae32e8203fa90a3</originalsourceid><addsrcrecordid>eNo9UMluwjAQtapWKmr5gfZiqedQ74mPiNJFArUS4Wy5zgSMQkLtcODvaxYxl1nfzLyH0BMlI0qJfi0nP_NyxAijI04KrQt2gwaMSpVxXcjbayzJPRrGuCHJZEFywgcIyjWErW3wuLXNIfqIbVvhN4h-1eKuxtMGXB-61ruIF4fYwzbisQtdTKmzDUS8jL5d4UVve8gWO-sAz7sKmmOxBLdu_d8eHtFdbZsIw4t_QMv3aTn5zGbfH1-T8SxzTMs-07VwjlDNraVCOqdVISpapV8LVRWMKCaoorXI5W9Nc5JXlQXOIHV4bTWx_AG9nPfuQpfOxt5sun1IzKJhUjFOleAsTbHz1IlHgNrsgt_acDCUmKOi5qSoOSpqLoom0PMZ5AHgCtBCaioI_wfWSnGB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562316432</pqid></control><display><type>article</type><title>Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Shankaran, Gokul V. ; Dogruoz, Mehmet Baris ; Abarham, Mehdi</creator><creatorcontrib>Shankaran, Gokul V. ; Dogruoz, Mehmet Baris ; Abarham, Mehdi</creatorcontrib><description><![CDATA[Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce accurate results if the time dependence of the power cycles and thermal BCs is small. Ideally, transient thermal analyses with actual time-dependent BCs and power cycles should be performed to determine the steady-state behavior. While being less overwhelming compared to laboratory experiments, fully time-dependent computational fluid dynamics (CFD) analysis still requires a large amount of CPU time. In order to overcome this large computational cost, several approximate models, such as resistor-capacitor (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>) thermal network approaches, have been developed. Although reasonably accurate, these models require rigorous curve-fitting effort followed by an optimization process, which only makes them practical for relatively simple systems. The present study builds a state-space model applicable to heat transfer problems and makes comparisons with the <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> networks. The state-space model is later applied to determine the transient thermal behavior of a complex system, namely, a multidie SOIC chip over a printed circuit board (PCB), with a significant reduction in CPU time and no compromise on the accuracy. Finally, as a demonstration of systemic thermal design, an optimization exercise is performed on the above state-space model, in which the power cycles on individual die elements are controlled to limit the maximum temperature on the package die.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3089982</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Boundary conditions ; Circuit boards ; Complex systems ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Computing costs ; Curve fitting ; Cyclic loads ; Design optimization ; Electronic packaging thermal management ; Electronic systems ; Heat transfer ; linear time invariant (LTI) ; peak-to-valley ; Printed circuits ; resistor–capacitor (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;R –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C ) network ; response surface optimization (RSO) ; SOIC package ; state space ; State space models ; State-space methods ; Steady state ; Thermal analysis ; Thermal design ; Thermodynamic properties ; Time dependence ; Transient analysis ; transient switching load</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-08, Vol.11 (8), p.1223-1234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-9f4cc0193aa145cc9684d1d58086d820624161f475bf1707ddae32e8203fa90a3</citedby><cites>FETCH-LOGICAL-c295t-9f4cc0193aa145cc9684d1d58086d820624161f475bf1707ddae32e8203fa90a3</cites><orcidid>0000-0001-6217-4477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9459140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9459140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shankaran, Gokul V.</creatorcontrib><creatorcontrib>Dogruoz, Mehmet Baris</creatorcontrib><creatorcontrib>Abarham, Mehdi</creatorcontrib><title>Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce accurate results if the time dependence of the power cycles and thermal BCs is small. Ideally, transient thermal analyses with actual time-dependent BCs and power cycles should be performed to determine the steady-state behavior. While being less overwhelming compared to laboratory experiments, fully time-dependent computational fluid dynamics (CFD) analysis still requires a large amount of CPU time. In order to overcome this large computational cost, several approximate models, such as resistor-capacitor (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>) thermal network approaches, have been developed. Although reasonably accurate, these models require rigorous curve-fitting effort followed by an optimization process, which only makes them practical for relatively simple systems. The present study builds a state-space model applicable to heat transfer problems and makes comparisons with the <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> networks. The state-space model is later applied to determine the transient thermal behavior of a complex system, namely, a multidie SOIC chip over a printed circuit board (PCB), with a significant reduction in CPU time and no compromise on the accuracy. Finally, as a demonstration of systemic thermal design, an optimization exercise is performed on the above state-space model, in which the power cycles on individual die elements are controlled to limit the maximum temperature on the package die.]]></description><subject>Analytical models</subject><subject>Boundary conditions</subject><subject>Circuit boards</subject><subject>Complex systems</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Computing costs</subject><subject>Curve fitting</subject><subject>Cyclic loads</subject><subject>Design optimization</subject><subject>Electronic packaging thermal management</subject><subject>Electronic systems</subject><subject>Heat transfer</subject><subject>linear time invariant (LTI)</subject><subject>peak-to-valley</subject><subject>Printed circuits</subject><subject>resistor–capacitor (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;R –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C ) network</subject><subject>response surface optimization (RSO)</subject><subject>SOIC package</subject><subject>state space</subject><subject>State space models</subject><subject>State-space methods</subject><subject>Steady state</subject><subject>Thermal analysis</subject><subject>Thermal design</subject><subject>Thermodynamic properties</subject><subject>Time dependence</subject><subject>Transient analysis</subject><subject>transient switching load</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMluwjAQtapWKmr5gfZiqedQ74mPiNJFArUS4Wy5zgSMQkLtcODvaxYxl1nfzLyH0BMlI0qJfi0nP_NyxAijI04KrQt2gwaMSpVxXcjbayzJPRrGuCHJZEFywgcIyjWErW3wuLXNIfqIbVvhN4h-1eKuxtMGXB-61ruIF4fYwzbisQtdTKmzDUS8jL5d4UVve8gWO-sAz7sKmmOxBLdu_d8eHtFdbZsIw4t_QMv3aTn5zGbfH1-T8SxzTMs-07VwjlDNraVCOqdVISpapV8LVRWMKCaoorXI5W9Nc5JXlQXOIHV4bTWx_AG9nPfuQpfOxt5sun1IzKJhUjFOleAsTbHz1IlHgNrsgt_acDCUmKOi5qSoOSpqLoom0PMZ5AHgCtBCaioI_wfWSnGB</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Shankaran, Gokul V.</creator><creator>Dogruoz, Mehmet Baris</creator><creator>Abarham, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6217-4477</orcidid></search><sort><creationdate>20210801</creationdate><title>Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique</title><author>Shankaran, Gokul V. ; Dogruoz, Mehmet Baris ; Abarham, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-9f4cc0193aa145cc9684d1d58086d820624161f475bf1707ddae32e8203fa90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Boundary conditions</topic><topic>Circuit boards</topic><topic>Complex systems</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Computing costs</topic><topic>Curve fitting</topic><topic>Cyclic loads</topic><topic>Design optimization</topic><topic>Electronic packaging thermal management</topic><topic>Electronic systems</topic><topic>Heat transfer</topic><topic>linear time invariant (LTI)</topic><topic>peak-to-valley</topic><topic>Printed circuits</topic><topic>resistor–capacitor (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;R –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C ) network</topic><topic>response surface optimization (RSO)</topic><topic>SOIC package</topic><topic>state space</topic><topic>State space models</topic><topic>State-space methods</topic><topic>Steady state</topic><topic>Thermal analysis</topic><topic>Thermal design</topic><topic>Thermodynamic properties</topic><topic>Time dependence</topic><topic>Transient analysis</topic><topic>transient switching load</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankaran, Gokul V.</creatorcontrib><creatorcontrib>Dogruoz, Mehmet Baris</creatorcontrib><creatorcontrib>Abarham, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shankaran, Gokul V.</au><au>Dogruoz, Mehmet Baris</au><au>Abarham, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>11</volume><issue>8</issue><spage>1223</spage><epage>1234</epage><pages>1223-1234</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce accurate results if the time dependence of the power cycles and thermal BCs is small. Ideally, transient thermal analyses with actual time-dependent BCs and power cycles should be performed to determine the steady-state behavior. While being less overwhelming compared to laboratory experiments, fully time-dependent computational fluid dynamics (CFD) analysis still requires a large amount of CPU time. In order to overcome this large computational cost, several approximate models, such as resistor-capacitor (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>) thermal network approaches, have been developed. Although reasonably accurate, these models require rigorous curve-fitting effort followed by an optimization process, which only makes them practical for relatively simple systems. The present study builds a state-space model applicable to heat transfer problems and makes comparisons with the <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> networks. The state-space model is later applied to determine the transient thermal behavior of a complex system, namely, a multidie SOIC chip over a printed circuit board (PCB), with a significant reduction in CPU time and no compromise on the accuracy. Finally, as a demonstration of systemic thermal design, an optimization exercise is performed on the above state-space model, in which the power cycles on individual die elements are controlled to limit the maximum temperature on the package die.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3089982</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6217-4477</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-08, Vol.11 (8), p.1223-1234
issn 2156-3950
2156-3985
language eng
recordid cdi_proquest_journals_2562316432
source IEEE Electronic Library (IEL)
subjects Analytical models
Boundary conditions
Circuit boards
Complex systems
Computational fluid dynamics
Computational fluid dynamics (CFD)
Computing costs
Curve fitting
Cyclic loads
Design optimization
Electronic packaging thermal management
Electronic systems
Heat transfer
linear time invariant (LTI)
peak-to-valley
Printed circuits
resistor–capacitor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">R –<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">C ) network
response surface optimization (RSO)
SOIC package
state space
State space models
State-space methods
Steady state
Thermal analysis
Thermal design
Thermodynamic properties
Time dependence
Transient analysis
transient switching load
title Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Analysis%20and%20Design%20of%20Electronics%20Systems%20Across%20Scales%20Using%20State-Space%20Modeling%20Technique&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Shankaran,%20Gokul%20V.&rft.date=2021-08-01&rft.volume=11&rft.issue=8&rft.spage=1223&rft.epage=1234&rft.pages=1223-1234&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3089982&rft_dat=%3Cproquest_RIE%3E2562316432%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562316432&rft_id=info:pmid/&rft_ieee_id=9459140&rfr_iscdi=true