Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique
Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2021-08, Vol.11 (8), p.1223-1234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1234 |
---|---|
container_issue | 8 |
container_start_page | 1223 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 11 |
creator | Shankaran, Gokul V. Dogruoz, Mehmet Baris Abarham, Mehdi |
description | Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce accurate results if the time dependence of the power cycles and thermal BCs is small. Ideally, transient thermal analyses with actual time-dependent BCs and power cycles should be performed to determine the steady-state behavior. While being less overwhelming compared to laboratory experiments, fully time-dependent computational fluid dynamics (CFD) analysis still requires a large amount of CPU time. In order to overcome this large computational cost, several approximate models, such as resistor-capacitor ( R - C ) thermal network approaches, have been developed. Although reasonably accurate, these models require rigorous curve-fitting effort followed by an optimization process, which only makes them practical for relatively simple systems. The present study builds a state-space model applicable to heat transfer problems and makes comparisons with the R - C networks. The state-space model is later applied to determine the transient thermal behavior of a complex system, namely, a multidie SOIC chip over a printed circuit board (PCB), with a significant reduction in CPU time and no compromise on the accuracy. Finally, as a demonstration of systemic thermal design, an optimization exercise is performed on the above state-space model, in which the power cycles on individual die elements are controlled to limit the maximum temperature on the package die. |
doi_str_mv | 10.1109/TCPMT.2021.3089982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2562316432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9459140</ieee_id><sourcerecordid>2562316432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-9f4cc0193aa145cc9684d1d58086d820624161f475bf1707ddae32e8203fa90a3</originalsourceid><addsrcrecordid>eNo9UMluwjAQtapWKmr5gfZiqedQ74mPiNJFArUS4Wy5zgSMQkLtcODvaxYxl1nfzLyH0BMlI0qJfi0nP_NyxAijI04KrQt2gwaMSpVxXcjbayzJPRrGuCHJZEFywgcIyjWErW3wuLXNIfqIbVvhN4h-1eKuxtMGXB-61ruIF4fYwzbisQtdTKmzDUS8jL5d4UVve8gWO-sAz7sKmmOxBLdu_d8eHtFdbZsIw4t_QMv3aTn5zGbfH1-T8SxzTMs-07VwjlDNraVCOqdVISpapV8LVRWMKCaoorXI5W9Nc5JXlQXOIHV4bTWx_AG9nPfuQpfOxt5sun1IzKJhUjFOleAsTbHz1IlHgNrsgt_acDCUmKOi5qSoOSpqLoom0PMZ5AHgCtBCaioI_wfWSnGB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562316432</pqid></control><display><type>article</type><title>Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Shankaran, Gokul V. ; Dogruoz, Mehmet Baris ; Abarham, Mehdi</creator><creatorcontrib>Shankaran, Gokul V. ; Dogruoz, Mehmet Baris ; Abarham, Mehdi</creatorcontrib><description><![CDATA[Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce accurate results if the time dependence of the power cycles and thermal BCs is small. Ideally, transient thermal analyses with actual time-dependent BCs and power cycles should be performed to determine the steady-state behavior. While being less overwhelming compared to laboratory experiments, fully time-dependent computational fluid dynamics (CFD) analysis still requires a large amount of CPU time. In order to overcome this large computational cost, several approximate models, such as resistor-capacitor (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>) thermal network approaches, have been developed. Although reasonably accurate, these models require rigorous curve-fitting effort followed by an optimization process, which only makes them practical for relatively simple systems. The present study builds a state-space model applicable to heat transfer problems and makes comparisons with the <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> networks. The state-space model is later applied to determine the transient thermal behavior of a complex system, namely, a multidie SOIC chip over a printed circuit board (PCB), with a significant reduction in CPU time and no compromise on the accuracy. Finally, as a demonstration of systemic thermal design, an optimization exercise is performed on the above state-space model, in which the power cycles on individual die elements are controlled to limit the maximum temperature on the package die.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3089982</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Boundary conditions ; Circuit boards ; Complex systems ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Computing costs ; Curve fitting ; Cyclic loads ; Design optimization ; Electronic packaging thermal management ; Electronic systems ; Heat transfer ; linear time invariant (LTI) ; peak-to-valley ; Printed circuits ; resistor–capacitor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">R –<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">C ) network ; response surface optimization (RSO) ; SOIC package ; state space ; State space models ; State-space methods ; Steady state ; Thermal analysis ; Thermal design ; Thermodynamic properties ; Time dependence ; Transient analysis ; transient switching load</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-08, Vol.11 (8), p.1223-1234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-9f4cc0193aa145cc9684d1d58086d820624161f475bf1707ddae32e8203fa90a3</citedby><cites>FETCH-LOGICAL-c295t-9f4cc0193aa145cc9684d1d58086d820624161f475bf1707ddae32e8203fa90a3</cites><orcidid>0000-0001-6217-4477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9459140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9459140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shankaran, Gokul V.</creatorcontrib><creatorcontrib>Dogruoz, Mehmet Baris</creatorcontrib><creatorcontrib>Abarham, Mehdi</creatorcontrib><title>Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce accurate results if the time dependence of the power cycles and thermal BCs is small. Ideally, transient thermal analyses with actual time-dependent BCs and power cycles should be performed to determine the steady-state behavior. While being less overwhelming compared to laboratory experiments, fully time-dependent computational fluid dynamics (CFD) analysis still requires a large amount of CPU time. In order to overcome this large computational cost, several approximate models, such as resistor-capacitor (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>) thermal network approaches, have been developed. Although reasonably accurate, these models require rigorous curve-fitting effort followed by an optimization process, which only makes them practical for relatively simple systems. The present study builds a state-space model applicable to heat transfer problems and makes comparisons with the <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> networks. The state-space model is later applied to determine the transient thermal behavior of a complex system, namely, a multidie SOIC chip over a printed circuit board (PCB), with a significant reduction in CPU time and no compromise on the accuracy. Finally, as a demonstration of systemic thermal design, an optimization exercise is performed on the above state-space model, in which the power cycles on individual die elements are controlled to limit the maximum temperature on the package die.]]></description><subject>Analytical models</subject><subject>Boundary conditions</subject><subject>Circuit boards</subject><subject>Complex systems</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Computing costs</subject><subject>Curve fitting</subject><subject>Cyclic loads</subject><subject>Design optimization</subject><subject>Electronic packaging thermal management</subject><subject>Electronic systems</subject><subject>Heat transfer</subject><subject>linear time invariant (LTI)</subject><subject>peak-to-valley</subject><subject>Printed circuits</subject><subject>resistor–capacitor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">R –<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">C ) network</subject><subject>response surface optimization (RSO)</subject><subject>SOIC package</subject><subject>state space</subject><subject>State space models</subject><subject>State-space methods</subject><subject>Steady state</subject><subject>Thermal analysis</subject><subject>Thermal design</subject><subject>Thermodynamic properties</subject><subject>Time dependence</subject><subject>Transient analysis</subject><subject>transient switching load</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMluwjAQtapWKmr5gfZiqedQ74mPiNJFArUS4Wy5zgSMQkLtcODvaxYxl1nfzLyH0BMlI0qJfi0nP_NyxAijI04KrQt2gwaMSpVxXcjbayzJPRrGuCHJZEFywgcIyjWErW3wuLXNIfqIbVvhN4h-1eKuxtMGXB-61ruIF4fYwzbisQtdTKmzDUS8jL5d4UVve8gWO-sAz7sKmmOxBLdu_d8eHtFdbZsIw4t_QMv3aTn5zGbfH1-T8SxzTMs-07VwjlDNraVCOqdVISpapV8LVRWMKCaoorXI5W9Nc5JXlQXOIHV4bTWx_AG9nPfuQpfOxt5sun1IzKJhUjFOleAsTbHz1IlHgNrsgt_acDCUmKOi5qSoOSpqLoom0PMZ5AHgCtBCaioI_wfWSnGB</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Shankaran, Gokul V.</creator><creator>Dogruoz, Mehmet Baris</creator><creator>Abarham, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6217-4477</orcidid></search><sort><creationdate>20210801</creationdate><title>Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique</title><author>Shankaran, Gokul V. ; Dogruoz, Mehmet Baris ; Abarham, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-9f4cc0193aa145cc9684d1d58086d820624161f475bf1707ddae32e8203fa90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Boundary conditions</topic><topic>Circuit boards</topic><topic>Complex systems</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Computing costs</topic><topic>Curve fitting</topic><topic>Cyclic loads</topic><topic>Design optimization</topic><topic>Electronic packaging thermal management</topic><topic>Electronic systems</topic><topic>Heat transfer</topic><topic>linear time invariant (LTI)</topic><topic>peak-to-valley</topic><topic>Printed circuits</topic><topic>resistor–capacitor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">R –<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">C ) network</topic><topic>response surface optimization (RSO)</topic><topic>SOIC package</topic><topic>state space</topic><topic>State space models</topic><topic>State-space methods</topic><topic>Steady state</topic><topic>Thermal analysis</topic><topic>Thermal design</topic><topic>Thermodynamic properties</topic><topic>Time dependence</topic><topic>Transient analysis</topic><topic>transient switching load</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankaran, Gokul V.</creatorcontrib><creatorcontrib>Dogruoz, Mehmet Baris</creatorcontrib><creatorcontrib>Abarham, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shankaran, Gokul V.</au><au>Dogruoz, Mehmet Baris</au><au>Abarham, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>11</volume><issue>8</issue><spage>1223</spage><epage>1234</epage><pages>1223-1234</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[Under a given set of boundary conditions (BCs), the thermal performance of an electronic system is generally evaluated based on its steady-state response to constant power loads and thermal BCs that are time-averaged values of the actual transient or cyclic loads and BCs. Such analysis may produce accurate results if the time dependence of the power cycles and thermal BCs is small. Ideally, transient thermal analyses with actual time-dependent BCs and power cycles should be performed to determine the steady-state behavior. While being less overwhelming compared to laboratory experiments, fully time-dependent computational fluid dynamics (CFD) analysis still requires a large amount of CPU time. In order to overcome this large computational cost, several approximate models, such as resistor-capacitor (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>) thermal network approaches, have been developed. Although reasonably accurate, these models require rigorous curve-fitting effort followed by an optimization process, which only makes them practical for relatively simple systems. The present study builds a state-space model applicable to heat transfer problems and makes comparisons with the <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> networks. The state-space model is later applied to determine the transient thermal behavior of a complex system, namely, a multidie SOIC chip over a printed circuit board (PCB), with a significant reduction in CPU time and no compromise on the accuracy. Finally, as a demonstration of systemic thermal design, an optimization exercise is performed on the above state-space model, in which the power cycles on individual die elements are controlled to limit the maximum temperature on the package die.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3089982</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6217-4477</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-08, Vol.11 (8), p.1223-1234 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_proquest_journals_2562316432 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Boundary conditions Circuit boards Complex systems Computational fluid dynamics Computational fluid dynamics (CFD) Computing costs Curve fitting Cyclic loads Design optimization Electronic packaging thermal management Electronic systems Heat transfer linear time invariant (LTI) peak-to-valley Printed circuits resistor–capacitor (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">R –<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">C ) network response surface optimization (RSO) SOIC package state space State space models State-space methods Steady state Thermal analysis Thermal design Thermodynamic properties Time dependence Transient analysis transient switching load |
title | Thermal Analysis and Design of Electronics Systems Across Scales Using State-Space Modeling Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Analysis%20and%20Design%20of%20Electronics%20Systems%20Across%20Scales%20Using%20State-Space%20Modeling%20Technique&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Shankaran,%20Gokul%20V.&rft.date=2021-08-01&rft.volume=11&rft.issue=8&rft.spage=1223&rft.epage=1234&rft.pages=1223-1234&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3089982&rft_dat=%3Cproquest_RIE%3E2562316432%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562316432&rft_id=info:pmid/&rft_ieee_id=9459140&rfr_iscdi=true |