169-OR: Magnetogenetic Stimulation of Pancreatic Nerves Regulates Blood Glucose

There is substantial evidence that neural regulation plays a critical role in glucose metabolism and hormone release. Targeting neural populations innervating the pancreas could provide an alternative therapy for diabetes. However, our understanding of the precise physiological roles of pancreatic n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2021-06, Vol.70 (Supplement_1)
Hauptverfasser: LI, ROSEMARY, GONZALEZ, MARIA JIMENEZ, POMERANZ, LISA E., SCHWARTZ, GARY J., STANLEY, SARAH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Supplement_1
container_start_page
container_title Diabetes (New York, N.Y.)
container_volume 70
creator LI, ROSEMARY
GONZALEZ, MARIA JIMENEZ
POMERANZ, LISA E.
SCHWARTZ, GARY J.
STANLEY, SARAH
description There is substantial evidence that neural regulation plays a critical role in glucose metabolism and hormone release. Targeting neural populations innervating the pancreas could provide an alternative therapy for diabetes. However, our understanding of the precise physiological roles of pancreatic nerves is incomplete because we lack tools to study these populations in a non-invasive, targeted, temporally controlled manner. Here, we developed and validated a novel magnetogenetic neuromodulatory construct in vitro and in vivo then targeted defined pancreatic nerves to assess their roles in glucose metabolism and hormone secretion. The construct, coding for TRPV1 ion channel fused to a nanobody binding endogenous ferritin (NbTRPV1), was transfected into neural cell lines and primary neurons. Magnetic stimulation significantly increased intracellular calcium in cells expressing NbTRPV1. For in vivo delivery, the construct was packaged into AAV and infused into the pancreas through the pancreatic duct, using serotypes and promoters to target β cells or pancreatic nerves. Ex vivo calcium imaging confirmed magnet activation of pancreas-projecting neurons expressing NbTRPV1. In vivo, targeting NbTRPV1 to β cells improved glucose tolerance in male and female mice, validating the efficacy of this construct to regulate cell activity in the pancreas of freely moving mice. Magnet treatment of ChAT-CRE mice expressing NbTRPV1 in parasympathetic pancreatic neurons significantly improved glucose tolerance and increased insulin secretion. Conversely, targeting vagal sensory nerves from the pancreas in Advillin-iCRE mice impaired glucose tolerance with no significant effect on hormone secretion. These data demonstrate for the first time a method for remote, temporally controlled, targeted modulation of pancreatic islets and nerves to regulate blood glucose. This approach can be used to study the contribution of pancreatic nerves in a wide range of diseases, from diabetes to pancreatic cancer.
doi_str_mv 10.2337/db21-169-OR
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562266220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562266220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640-347399d4b18d08cf974225952ce3bb9ae7e97b01fef5b417a2cbe2f0e5c9c8913</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKdX_oGClxLNR9ss3umYU5hW5i68C0l6Mjq6Ziat4L83ZXI4H_C-vAcehK4puWOci_vaMIppKXG1PkETKrnEnImvUzQhhDJMhRTn6CLGHSGkTDVB1dH9kL3pbQe930Kajc0--2Y_tLpvfJd5l33ozgbQo_IO4QditobtqKfrqfW-zpbtYH2ES3TmdBvh6n9P0eZ5sZm_4FW1fJ0_rrAtc4J5LriUdW7orCYz66TIGStkwSxwY6QGAVIYQh24wuRUaGYNMEegsNLOJOVTdHOMPQT_PUDs1c4PoUsfFStKxsrUJLlujy4bfIwBnDqEZq_Dr6JEjcDUCEwlBKpa8z8Te11R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562266220</pqid></control><display><type>article</type><title>169-OR: Magnetogenetic Stimulation of Pancreatic Nerves Regulates Blood Glucose</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>LI, ROSEMARY ; GONZALEZ, MARIA JIMENEZ ; POMERANZ, LISA E. ; SCHWARTZ, GARY J. ; STANLEY, SARAH</creator><creatorcontrib>LI, ROSEMARY ; GONZALEZ, MARIA JIMENEZ ; POMERANZ, LISA E. ; SCHWARTZ, GARY J. ; STANLEY, SARAH</creatorcontrib><description>There is substantial evidence that neural regulation plays a critical role in glucose metabolism and hormone release. Targeting neural populations innervating the pancreas could provide an alternative therapy for diabetes. However, our understanding of the precise physiological roles of pancreatic nerves is incomplete because we lack tools to study these populations in a non-invasive, targeted, temporally controlled manner. Here, we developed and validated a novel magnetogenetic neuromodulatory construct in vitro and in vivo then targeted defined pancreatic nerves to assess their roles in glucose metabolism and hormone secretion. The construct, coding for TRPV1 ion channel fused to a nanobody binding endogenous ferritin (NbTRPV1), was transfected into neural cell lines and primary neurons. Magnetic stimulation significantly increased intracellular calcium in cells expressing NbTRPV1. For in vivo delivery, the construct was packaged into AAV and infused into the pancreas through the pancreatic duct, using serotypes and promoters to target β cells or pancreatic nerves. Ex vivo calcium imaging confirmed magnet activation of pancreas-projecting neurons expressing NbTRPV1. In vivo, targeting NbTRPV1 to β cells improved glucose tolerance in male and female mice, validating the efficacy of this construct to regulate cell activity in the pancreas of freely moving mice. Magnet treatment of ChAT-CRE mice expressing NbTRPV1 in parasympathetic pancreatic neurons significantly improved glucose tolerance and increased insulin secretion. Conversely, targeting vagal sensory nerves from the pancreas in Advillin-iCRE mice impaired glucose tolerance with no significant effect on hormone secretion. These data demonstrate for the first time a method for remote, temporally controlled, targeted modulation of pancreatic islets and nerves to regulate blood glucose. This approach can be used to study the contribution of pancreatic nerves in a wide range of diseases, from diabetes to pancreatic cancer.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db21-169-OR</identifier><language>eng</language><publisher>New York: American Diabetes Association</publisher><subject>Beta cells ; Blood glucose ; Calcium (intracellular) ; Calcium imaging ; Capsaicin receptors ; Coding ; Diabetes ; Diabetes mellitus ; Ferritin ; Glucose ; Glucose metabolism ; Glucose tolerance ; Hormone release ; Insulin ; Insulin secretion ; Magnetic fields ; Metabolism ; Nanobodies ; Neurons ; Pancreas ; Pancreatic cancer ; Parasympathetic nervous system ; Population studies ; Secretion ; Sensory neurons ; Serotypes ; Vagus nerve</subject><ispartof>Diabetes (New York, N.Y.), 2021-06, Vol.70 (Supplement_1)</ispartof><rights>Copyright American Diabetes Association Jun 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>LI, ROSEMARY</creatorcontrib><creatorcontrib>GONZALEZ, MARIA JIMENEZ</creatorcontrib><creatorcontrib>POMERANZ, LISA E.</creatorcontrib><creatorcontrib>SCHWARTZ, GARY J.</creatorcontrib><creatorcontrib>STANLEY, SARAH</creatorcontrib><title>169-OR: Magnetogenetic Stimulation of Pancreatic Nerves Regulates Blood Glucose</title><title>Diabetes (New York, N.Y.)</title><description>There is substantial evidence that neural regulation plays a critical role in glucose metabolism and hormone release. Targeting neural populations innervating the pancreas could provide an alternative therapy for diabetes. However, our understanding of the precise physiological roles of pancreatic nerves is incomplete because we lack tools to study these populations in a non-invasive, targeted, temporally controlled manner. Here, we developed and validated a novel magnetogenetic neuromodulatory construct in vitro and in vivo then targeted defined pancreatic nerves to assess their roles in glucose metabolism and hormone secretion. The construct, coding for TRPV1 ion channel fused to a nanobody binding endogenous ferritin (NbTRPV1), was transfected into neural cell lines and primary neurons. Magnetic stimulation significantly increased intracellular calcium in cells expressing NbTRPV1. For in vivo delivery, the construct was packaged into AAV and infused into the pancreas through the pancreatic duct, using serotypes and promoters to target β cells or pancreatic nerves. Ex vivo calcium imaging confirmed magnet activation of pancreas-projecting neurons expressing NbTRPV1. In vivo, targeting NbTRPV1 to β cells improved glucose tolerance in male and female mice, validating the efficacy of this construct to regulate cell activity in the pancreas of freely moving mice. Magnet treatment of ChAT-CRE mice expressing NbTRPV1 in parasympathetic pancreatic neurons significantly improved glucose tolerance and increased insulin secretion. Conversely, targeting vagal sensory nerves from the pancreas in Advillin-iCRE mice impaired glucose tolerance with no significant effect on hormone secretion. These data demonstrate for the first time a method for remote, temporally controlled, targeted modulation of pancreatic islets and nerves to regulate blood glucose. This approach can be used to study the contribution of pancreatic nerves in a wide range of diseases, from diabetes to pancreatic cancer.</description><subject>Beta cells</subject><subject>Blood glucose</subject><subject>Calcium (intracellular)</subject><subject>Calcium imaging</subject><subject>Capsaicin receptors</subject><subject>Coding</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Ferritin</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose tolerance</subject><subject>Hormone release</subject><subject>Insulin</subject><subject>Insulin secretion</subject><subject>Magnetic fields</subject><subject>Metabolism</subject><subject>Nanobodies</subject><subject>Neurons</subject><subject>Pancreas</subject><subject>Pancreatic cancer</subject><subject>Parasympathetic nervous system</subject><subject>Population studies</subject><subject>Secretion</subject><subject>Sensory neurons</subject><subject>Serotypes</subject><subject>Vagus nerve</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAUhoMoOKdX_oGClxLNR9ss3umYU5hW5i68C0l6Mjq6Ziat4L83ZXI4H_C-vAcehK4puWOci_vaMIppKXG1PkETKrnEnImvUzQhhDJMhRTn6CLGHSGkTDVB1dH9kL3pbQe930Kajc0--2Y_tLpvfJd5l33ozgbQo_IO4QditobtqKfrqfW-zpbtYH2ES3TmdBvh6n9P0eZ5sZm_4FW1fJ0_rrAtc4J5LriUdW7orCYz66TIGStkwSxwY6QGAVIYQh24wuRUaGYNMEegsNLOJOVTdHOMPQT_PUDs1c4PoUsfFStKxsrUJLlujy4bfIwBnDqEZq_Dr6JEjcDUCEwlBKpa8z8Te11R</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>LI, ROSEMARY</creator><creator>GONZALEZ, MARIA JIMENEZ</creator><creator>POMERANZ, LISA E.</creator><creator>SCHWARTZ, GARY J.</creator><creator>STANLEY, SARAH</creator><general>American Diabetes Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20210601</creationdate><title>169-OR: Magnetogenetic Stimulation of Pancreatic Nerves Regulates Blood Glucose</title><author>LI, ROSEMARY ; GONZALEZ, MARIA JIMENEZ ; POMERANZ, LISA E. ; SCHWARTZ, GARY J. ; STANLEY, SARAH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640-347399d4b18d08cf974225952ce3bb9ae7e97b01fef5b417a2cbe2f0e5c9c8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beta cells</topic><topic>Blood glucose</topic><topic>Calcium (intracellular)</topic><topic>Calcium imaging</topic><topic>Capsaicin receptors</topic><topic>Coding</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Ferritin</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose tolerance</topic><topic>Hormone release</topic><topic>Insulin</topic><topic>Insulin secretion</topic><topic>Magnetic fields</topic><topic>Metabolism</topic><topic>Nanobodies</topic><topic>Neurons</topic><topic>Pancreas</topic><topic>Pancreatic cancer</topic><topic>Parasympathetic nervous system</topic><topic>Population studies</topic><topic>Secretion</topic><topic>Sensory neurons</topic><topic>Serotypes</topic><topic>Vagus nerve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LI, ROSEMARY</creatorcontrib><creatorcontrib>GONZALEZ, MARIA JIMENEZ</creatorcontrib><creatorcontrib>POMERANZ, LISA E.</creatorcontrib><creatorcontrib>SCHWARTZ, GARY J.</creatorcontrib><creatorcontrib>STANLEY, SARAH</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LI, ROSEMARY</au><au>GONZALEZ, MARIA JIMENEZ</au><au>POMERANZ, LISA E.</au><au>SCHWARTZ, GARY J.</au><au>STANLEY, SARAH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>169-OR: Magnetogenetic Stimulation of Pancreatic Nerves Regulates Blood Glucose</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>70</volume><issue>Supplement_1</issue><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>There is substantial evidence that neural regulation plays a critical role in glucose metabolism and hormone release. Targeting neural populations innervating the pancreas could provide an alternative therapy for diabetes. However, our understanding of the precise physiological roles of pancreatic nerves is incomplete because we lack tools to study these populations in a non-invasive, targeted, temporally controlled manner. Here, we developed and validated a novel magnetogenetic neuromodulatory construct in vitro and in vivo then targeted defined pancreatic nerves to assess their roles in glucose metabolism and hormone secretion. The construct, coding for TRPV1 ion channel fused to a nanobody binding endogenous ferritin (NbTRPV1), was transfected into neural cell lines and primary neurons. Magnetic stimulation significantly increased intracellular calcium in cells expressing NbTRPV1. For in vivo delivery, the construct was packaged into AAV and infused into the pancreas through the pancreatic duct, using serotypes and promoters to target β cells or pancreatic nerves. Ex vivo calcium imaging confirmed magnet activation of pancreas-projecting neurons expressing NbTRPV1. In vivo, targeting NbTRPV1 to β cells improved glucose tolerance in male and female mice, validating the efficacy of this construct to regulate cell activity in the pancreas of freely moving mice. Magnet treatment of ChAT-CRE mice expressing NbTRPV1 in parasympathetic pancreatic neurons significantly improved glucose tolerance and increased insulin secretion. Conversely, targeting vagal sensory nerves from the pancreas in Advillin-iCRE mice impaired glucose tolerance with no significant effect on hormone secretion. These data demonstrate for the first time a method for remote, temporally controlled, targeted modulation of pancreatic islets and nerves to regulate blood glucose. This approach can be used to study the contribution of pancreatic nerves in a wide range of diseases, from diabetes to pancreatic cancer.</abstract><cop>New York</cop><pub>American Diabetes Association</pub><doi>10.2337/db21-169-OR</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2021-06, Vol.70 (Supplement_1)
issn 0012-1797
1939-327X
language eng
recordid cdi_proquest_journals_2562266220
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Beta cells
Blood glucose
Calcium (intracellular)
Calcium imaging
Capsaicin receptors
Coding
Diabetes
Diabetes mellitus
Ferritin
Glucose
Glucose metabolism
Glucose tolerance
Hormone release
Insulin
Insulin secretion
Magnetic fields
Metabolism
Nanobodies
Neurons
Pancreas
Pancreatic cancer
Parasympathetic nervous system
Population studies
Secretion
Sensory neurons
Serotypes
Vagus nerve
title 169-OR: Magnetogenetic Stimulation of Pancreatic Nerves Regulates Blood Glucose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=169-OR:%20Magnetogenetic%20Stimulation%20of%20Pancreatic%20Nerves%20Regulates%20Blood%20Glucose&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=LI,%20ROSEMARY&rft.date=2021-06-01&rft.volume=70&rft.issue=Supplement_1&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db21-169-OR&rft_dat=%3Cproquest_cross%3E2562266220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562266220&rft_id=info:pmid/&rfr_iscdi=true