Cyclic deformation and damage mechanisms of 9%Cr steel under hybrid stress-strain controlled creep fatigue interaction loadings

•The hybrid-controlled creep-fatigue interaction (HCFI) tests have been performed.•All of the conducted HCFI tests can be divided into two regions.•The failure mechanisms of the HCFI tests in different regions have been clarified.•A new life prediction method based on the steady growth rate has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2021-10, Vol.151, p.106357, Article 106357
Hauptverfasser: Zhang, Tianyu, Wang, Xiaowei, Ji, Yunnan, Tang, Jianqun, Jiang, Yong, Zhang, Xiancheng, Gong, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106357
container_title International journal of fatigue
container_volume 151
creator Zhang, Tianyu
Wang, Xiaowei
Ji, Yunnan
Tang, Jianqun
Jiang, Yong
Zhang, Xiancheng
Gong, Jianming
description •The hybrid-controlled creep-fatigue interaction (HCFI) tests have been performed.•All of the conducted HCFI tests can be divided into two regions.•The failure mechanisms of the HCFI tests in different regions have been clarified.•A new life prediction method based on the steady growth rate has been proposed. The hybrid stress–strain controlled creep-fatigue interaction (HCFI) loadings at various dwell conditions were conducted on 9%Cr steel at 625 °C to investigate the deformation and damage mechanisms. Results reveal that the HCFI tests with conservative dwell conditions show complicated cyclic responses and low creep strain. The failure specimens demonstrate strong creep-fatigue interaction damage (CFID) with many branched surface cracks. With the increase in dwell stress and time, the HCFI tests show continuous softening and remarkable creep deformation. The creep-dominant damage (CDD) featured by internal creep cavities and blunt surface cracks leads to the final failure.
doi_str_mv 10.1016/j.ijfatigue.2021.106357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562263887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112321002176</els_id><sourcerecordid>2562263887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-33cd0f19159c0d62217e1ac5c6dd55b7f836ddf2a84862e796a39bdaacd889a63</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrX6DAXE5NY95ZVkGX1Bwo-uQJnfaDDNJTWaErvx1U1vcujqXy3ncexC6pWRBCS0fuoXtWjXazQQLRhhN25IX1Rma0boSGc8Ldo5mhOYso5TxS3QVY0cIEaQqZui72eveamyg9WFINt5h5Qw2alAbwAPorXI2DhH7Fov7JuA4AvR4cgYC3u7XwZq0ChBjlkBZh7V3Y_B9DwbrALDDp-uwdSMEpX8zeq-MdZt4jS5a1Ue4OeEcfTw9vjcv2ert-bVZrjKdEzFmnGtDWipoITQxJWO0Aqp0oUtjimJdtTVPU8tUndclg0qUiou1UUqbuhaq5HN0d_TdBf85QRxl56fgUqRkRfIreV1XiVUdWTr4GAO0chfsoMJeUiIPbctO_rUtD23LY9tJuTwqIT3xZSHIqC04DcYG0KM03v7r8QPsh49f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562263887</pqid></control><display><type>article</type><title>Cyclic deformation and damage mechanisms of 9%Cr steel under hybrid stress-strain controlled creep fatigue interaction loadings</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Tianyu ; Wang, Xiaowei ; Ji, Yunnan ; Tang, Jianqun ; Jiang, Yong ; Zhang, Xiancheng ; Gong, Jianming</creator><creatorcontrib>Zhang, Tianyu ; Wang, Xiaowei ; Ji, Yunnan ; Tang, Jianqun ; Jiang, Yong ; Zhang, Xiancheng ; Gong, Jianming</creatorcontrib><description>•The hybrid-controlled creep-fatigue interaction (HCFI) tests have been performed.•All of the conducted HCFI tests can be divided into two regions.•The failure mechanisms of the HCFI tests in different regions have been clarified.•A new life prediction method based on the steady growth rate has been proposed. The hybrid stress–strain controlled creep-fatigue interaction (HCFI) loadings at various dwell conditions were conducted on 9%Cr steel at 625 °C to investigate the deformation and damage mechanisms. Results reveal that the HCFI tests with conservative dwell conditions show complicated cyclic responses and low creep strain. The failure specimens demonstrate strong creep-fatigue interaction damage (CFID) with many branched surface cracks. With the increase in dwell stress and time, the HCFI tests show continuous softening and remarkable creep deformation. The creep-dominant damage (CDD) featured by internal creep cavities and blunt surface cracks leads to the final failure.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2021.106357</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chromium steels ; Creep fatigue ; Creep strength ; Creep-fatigue interaction ; Damage ; Deformation ; Deformation behavior ; Fatigue cracks ; Fatigue failure ; Hybrid stress-strain controlled ; Materials fatigue ; Microstructure evolution ; Strain ; Surface cracks</subject><ispartof>International journal of fatigue, 2021-10, Vol.151, p.106357, Article 106357</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-33cd0f19159c0d62217e1ac5c6dd55b7f836ddf2a84862e796a39bdaacd889a63</citedby><cites>FETCH-LOGICAL-c409t-33cd0f19159c0d62217e1ac5c6dd55b7f836ddf2a84862e796a39bdaacd889a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2021.106357$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Zhang, Tianyu</creatorcontrib><creatorcontrib>Wang, Xiaowei</creatorcontrib><creatorcontrib>Ji, Yunnan</creatorcontrib><creatorcontrib>Tang, Jianqun</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Zhang, Xiancheng</creatorcontrib><creatorcontrib>Gong, Jianming</creatorcontrib><title>Cyclic deformation and damage mechanisms of 9%Cr steel under hybrid stress-strain controlled creep fatigue interaction loadings</title><title>International journal of fatigue</title><description>•The hybrid-controlled creep-fatigue interaction (HCFI) tests have been performed.•All of the conducted HCFI tests can be divided into two regions.•The failure mechanisms of the HCFI tests in different regions have been clarified.•A new life prediction method based on the steady growth rate has been proposed. The hybrid stress–strain controlled creep-fatigue interaction (HCFI) loadings at various dwell conditions were conducted on 9%Cr steel at 625 °C to investigate the deformation and damage mechanisms. Results reveal that the HCFI tests with conservative dwell conditions show complicated cyclic responses and low creep strain. The failure specimens demonstrate strong creep-fatigue interaction damage (CFID) with many branched surface cracks. With the increase in dwell stress and time, the HCFI tests show continuous softening and remarkable creep deformation. The creep-dominant damage (CDD) featured by internal creep cavities and blunt surface cracks leads to the final failure.</description><subject>Chromium steels</subject><subject>Creep fatigue</subject><subject>Creep strength</subject><subject>Creep-fatigue interaction</subject><subject>Damage</subject><subject>Deformation</subject><subject>Deformation behavior</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Hybrid stress-strain controlled</subject><subject>Materials fatigue</subject><subject>Microstructure evolution</subject><subject>Strain</subject><subject>Surface cracks</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKAzEUDaJgrX6DAXE5NY95ZVkGX1Bwo-uQJnfaDDNJTWaErvx1U1vcujqXy3ncexC6pWRBCS0fuoXtWjXazQQLRhhN25IX1Rma0boSGc8Ldo5mhOYso5TxS3QVY0cIEaQqZui72eveamyg9WFINt5h5Qw2alAbwAPorXI2DhH7Fov7JuA4AvR4cgYC3u7XwZq0ChBjlkBZh7V3Y_B9DwbrALDDp-uwdSMEpX8zeq-MdZt4jS5a1Ue4OeEcfTw9vjcv2ert-bVZrjKdEzFmnGtDWipoITQxJWO0Aqp0oUtjimJdtTVPU8tUndclg0qUiou1UUqbuhaq5HN0d_TdBf85QRxl56fgUqRkRfIreV1XiVUdWTr4GAO0chfsoMJeUiIPbctO_rUtD23LY9tJuTwqIT3xZSHIqC04DcYG0KM03v7r8QPsh49f</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Zhang, Tianyu</creator><creator>Wang, Xiaowei</creator><creator>Ji, Yunnan</creator><creator>Tang, Jianqun</creator><creator>Jiang, Yong</creator><creator>Zhang, Xiancheng</creator><creator>Gong, Jianming</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202110</creationdate><title>Cyclic deformation and damage mechanisms of 9%Cr steel under hybrid stress-strain controlled creep fatigue interaction loadings</title><author>Zhang, Tianyu ; Wang, Xiaowei ; Ji, Yunnan ; Tang, Jianqun ; Jiang, Yong ; Zhang, Xiancheng ; Gong, Jianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-33cd0f19159c0d62217e1ac5c6dd55b7f836ddf2a84862e796a39bdaacd889a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chromium steels</topic><topic>Creep fatigue</topic><topic>Creep strength</topic><topic>Creep-fatigue interaction</topic><topic>Damage</topic><topic>Deformation</topic><topic>Deformation behavior</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Hybrid stress-strain controlled</topic><topic>Materials fatigue</topic><topic>Microstructure evolution</topic><topic>Strain</topic><topic>Surface cracks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianyu</creatorcontrib><creatorcontrib>Wang, Xiaowei</creatorcontrib><creatorcontrib>Ji, Yunnan</creatorcontrib><creatorcontrib>Tang, Jianqun</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Zhang, Xiancheng</creatorcontrib><creatorcontrib>Gong, Jianming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tianyu</au><au>Wang, Xiaowei</au><au>Ji, Yunnan</au><au>Tang, Jianqun</au><au>Jiang, Yong</au><au>Zhang, Xiancheng</au><au>Gong, Jianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic deformation and damage mechanisms of 9%Cr steel under hybrid stress-strain controlled creep fatigue interaction loadings</atitle><jtitle>International journal of fatigue</jtitle><date>2021-10</date><risdate>2021</risdate><volume>151</volume><spage>106357</spage><pages>106357-</pages><artnum>106357</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The hybrid-controlled creep-fatigue interaction (HCFI) tests have been performed.•All of the conducted HCFI tests can be divided into two regions.•The failure mechanisms of the HCFI tests in different regions have been clarified.•A new life prediction method based on the steady growth rate has been proposed. The hybrid stress–strain controlled creep-fatigue interaction (HCFI) loadings at various dwell conditions were conducted on 9%Cr steel at 625 °C to investigate the deformation and damage mechanisms. Results reveal that the HCFI tests with conservative dwell conditions show complicated cyclic responses and low creep strain. The failure specimens demonstrate strong creep-fatigue interaction damage (CFID) with many branched surface cracks. With the increase in dwell stress and time, the HCFI tests show continuous softening and remarkable creep deformation. The creep-dominant damage (CDD) featured by internal creep cavities and blunt surface cracks leads to the final failure.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2021.106357</doi></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2021-10, Vol.151, p.106357, Article 106357
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2562263887
source ScienceDirect Journals (5 years ago - present)
subjects Chromium steels
Creep fatigue
Creep strength
Creep-fatigue interaction
Damage
Deformation
Deformation behavior
Fatigue cracks
Fatigue failure
Hybrid stress-strain controlled
Materials fatigue
Microstructure evolution
Strain
Surface cracks
title Cyclic deformation and damage mechanisms of 9%Cr steel under hybrid stress-strain controlled creep fatigue interaction loadings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20deformation%20and%20damage%20mechanisms%20of%209%25Cr%20steel%20under%20hybrid%20stress-strain%20controlled%20creep%20fatigue%20interaction%20loadings&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Zhang,%20Tianyu&rft.date=2021-10&rft.volume=151&rft.spage=106357&rft.pages=106357-&rft.artnum=106357&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2021.106357&rft_dat=%3Cproquest_cross%3E2562263887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562263887&rft_id=info:pmid/&rft_els_id=S0142112321002176&rfr_iscdi=true