An experimental investigation on the transient heat transfer characteristics using air/water droplets two-phase flow
The present study focused on evaluating the heat transfer behavior and predicting the surface resulting status during air/water droplets two-phase flow. Transient heat transfer based on the lumped capacitance model (LCM) was investigated experimentally under a range of water droplets concentration,...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-03, Vol.791 (1), p.12001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12001 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 791 |
creator | Abed, A H Shcheklein, S E Pakhaluev, V M |
description | The present study focused on evaluating the heat transfer behavior and predicting the surface resulting status during air/water droplets two-phase flow. Transient heat transfer based on the lumped capacitance model (LCM) was investigated experimentally under a range of water droplets concentration, surface temperature, and varying Re number. Compared with a single-phase air cooling, the transient surface temperature decreased with the increase in water droplets concentration and Re number. At the same cooling time, the surface temperature decreases about 13.5%, 47%, and 53.2% for (j = 46.79 - 111.68 kg/m2 hr). It was also noticed that the heat transfer coefficient increased with the increase in water droplets concentration and reach its maximum value at (j = 111.68 kg/m2 hr). Based on the analysis of the experimental results, the heat transfer mechanism due to the impacting of water droplets on the sphere surface was classified into three important physical regimes. Clear convection heat transfer regime corresponds to the dry region (region I); Convection and evaporation regimes correspond to the dry-out and wet regions (region II and III). |
doi_str_mv | 10.1088/1757-899X/791/1/012001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562244514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562244514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-c7c89a7114fa083fac10ba85918f76405a2b4481e818b807b32f86742e0562e33</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObk6ZNejnG_ICJFyp4F9IuWTNmW5PM6b83ozIRBCGQnOR5TzgPQudAroAIkQLPeSLK8iXlJaSQEqCEwAEa7R8O92cBx-jE-xUhBWeMjFCYtFh_9NrZV90Gtca2fdc-2KUKtmtxXKHRODjVehsB3GgVhtJoh-tGOVWHmI6R2uONt-0SK-vSrYq3eOG6fq2Dx2HbJX2jvMZm3W1P0ZFRa6_Pvvcxer6ePU1vk_nDzd10Mk_qjFJIal6LUnEAZhQRmVE1kEqJvARheMFIrmjFmAAtQFSC8CqjRsS5qCZ5QXWWjdHF0Ld33dsmjiVX3ca18UtJI0EZy4FFqhio2nXeO21kH20o9ymByJ1huZMndyJlNCxBDoZj8HII2q7_6Xz_OPuFyX5hIkr_QP_p_wWXGow9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562244514</pqid></control><display><type>article</type><title>An experimental investigation on the transient heat transfer characteristics using air/water droplets two-phase flow</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Abed, A H ; Shcheklein, S E ; Pakhaluev, V M</creator><creatorcontrib>Abed, A H ; Shcheklein, S E ; Pakhaluev, V M</creatorcontrib><description>The present study focused on evaluating the heat transfer behavior and predicting the surface resulting status during air/water droplets two-phase flow. Transient heat transfer based on the lumped capacitance model (LCM) was investigated experimentally under a range of water droplets concentration, surface temperature, and varying Re number. Compared with a single-phase air cooling, the transient surface temperature decreased with the increase in water droplets concentration and Re number. At the same cooling time, the surface temperature decreases about 13.5%, 47%, and 53.2% for (j = 46.79 - 111.68 kg/m2 hr). It was also noticed that the heat transfer coefficient increased with the increase in water droplets concentration and reach its maximum value at (j = 111.68 kg/m2 hr). Based on the analysis of the experimental results, the heat transfer mechanism due to the impacting of water droplets on the sphere surface was classified into three important physical regimes. Clear convection heat transfer regime corresponds to the dry region (region I); Convection and evaporation regimes correspond to the dry-out and wet regions (region II and III).</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/791/1/012001</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air cooling ; Convection ; Droplets ; Heat transfer ; Heat transfer coefficients ; Lumped parameter systems ; Surface temperature ; Transient heat transfer ; Two phase flow ; Water drops</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-03, Vol.791 (1), p.12001</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-c7c89a7114fa083fac10ba85918f76405a2b4481e818b807b32f86742e0562e33</citedby><cites>FETCH-LOGICAL-c3221-c7c89a7114fa083fac10ba85918f76405a2b4481e818b807b32f86742e0562e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/791/1/012001/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27913,27914,38857,38879,53829,53856</link.rule.ids></links><search><creatorcontrib>Abed, A H</creatorcontrib><creatorcontrib>Shcheklein, S E</creatorcontrib><creatorcontrib>Pakhaluev, V M</creatorcontrib><title>An experimental investigation on the transient heat transfer characteristics using air/water droplets two-phase flow</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>The present study focused on evaluating the heat transfer behavior and predicting the surface resulting status during air/water droplets two-phase flow. Transient heat transfer based on the lumped capacitance model (LCM) was investigated experimentally under a range of water droplets concentration, surface temperature, and varying Re number. Compared with a single-phase air cooling, the transient surface temperature decreased with the increase in water droplets concentration and Re number. At the same cooling time, the surface temperature decreases about 13.5%, 47%, and 53.2% for (j = 46.79 - 111.68 kg/m2 hr). It was also noticed that the heat transfer coefficient increased with the increase in water droplets concentration and reach its maximum value at (j = 111.68 kg/m2 hr). Based on the analysis of the experimental results, the heat transfer mechanism due to the impacting of water droplets on the sphere surface was classified into three important physical regimes. Clear convection heat transfer regime corresponds to the dry region (region I); Convection and evaporation regimes correspond to the dry-out and wet regions (region II and III).</description><subject>Air cooling</subject><subject>Convection</subject><subject>Droplets</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Lumped parameter systems</subject><subject>Surface temperature</subject><subject>Transient heat transfer</subject><subject>Two phase flow</subject><subject>Water drops</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObk6ZNejnG_ICJFyp4F9IuWTNmW5PM6b83ozIRBCGQnOR5TzgPQudAroAIkQLPeSLK8iXlJaSQEqCEwAEa7R8O92cBx-jE-xUhBWeMjFCYtFh_9NrZV90Gtca2fdc-2KUKtmtxXKHRODjVehsB3GgVhtJoh-tGOVWHmI6R2uONt-0SK-vSrYq3eOG6fq2Dx2HbJX2jvMZm3W1P0ZFRa6_Pvvcxer6ePU1vk_nDzd10Mk_qjFJIal6LUnEAZhQRmVE1kEqJvARheMFIrmjFmAAtQFSC8CqjRsS5qCZ5QXWWjdHF0Ld33dsmjiVX3ca18UtJI0EZy4FFqhio2nXeO21kH20o9ymByJ1huZMndyJlNCxBDoZj8HII2q7_6Xz_OPuFyX5hIkr_QP_p_wWXGow9</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Abed, A H</creator><creator>Shcheklein, S E</creator><creator>Pakhaluev, V M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200301</creationdate><title>An experimental investigation on the transient heat transfer characteristics using air/water droplets two-phase flow</title><author>Abed, A H ; Shcheklein, S E ; Pakhaluev, V M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-c7c89a7114fa083fac10ba85918f76405a2b4481e818b807b32f86742e0562e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air cooling</topic><topic>Convection</topic><topic>Droplets</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Lumped parameter systems</topic><topic>Surface temperature</topic><topic>Transient heat transfer</topic><topic>Two phase flow</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abed, A H</creatorcontrib><creatorcontrib>Shcheklein, S E</creatorcontrib><creatorcontrib>Pakhaluev, V M</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abed, A H</au><au>Shcheklein, S E</au><au>Pakhaluev, V M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental investigation on the transient heat transfer characteristics using air/water droplets two-phase flow</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>791</volume><issue>1</issue><spage>12001</spage><pages>12001-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The present study focused on evaluating the heat transfer behavior and predicting the surface resulting status during air/water droplets two-phase flow. Transient heat transfer based on the lumped capacitance model (LCM) was investigated experimentally under a range of water droplets concentration, surface temperature, and varying Re number. Compared with a single-phase air cooling, the transient surface temperature decreased with the increase in water droplets concentration and Re number. At the same cooling time, the surface temperature decreases about 13.5%, 47%, and 53.2% for (j = 46.79 - 111.68 kg/m2 hr). It was also noticed that the heat transfer coefficient increased with the increase in water droplets concentration and reach its maximum value at (j = 111.68 kg/m2 hr). Based on the analysis of the experimental results, the heat transfer mechanism due to the impacting of water droplets on the sphere surface was classified into three important physical regimes. Clear convection heat transfer regime corresponds to the dry region (region I); Convection and evaporation regimes correspond to the dry-out and wet regions (region II and III).</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/791/1/012001</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-03, Vol.791 (1), p.12001 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562244514 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Air cooling Convection Droplets Heat transfer Heat transfer coefficients Lumped parameter systems Surface temperature Transient heat transfer Two phase flow Water drops |
title | An experimental investigation on the transient heat transfer characteristics using air/water droplets two-phase flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20investigation%20on%20the%20transient%20heat%20transfer%20characteristics%20using%20air/water%20droplets%20two-phase%20flow&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Abed,%20A%20H&rft.date=2020-03-01&rft.volume=791&rft.issue=1&rft.spage=12001&rft.pages=12001-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/791/1/012001&rft_dat=%3Cproquest_cross%3E2562244514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562244514&rft_id=info:pmid/&rfr_iscdi=true |