Plutonium-Doped Monazite and Other Orthophosphates—Thermodynamics and Experimental Data on Long-Term Behavior

The paper consists of two main parts: a microscopic and spectroscopic investigation of the single crystal of 17-year-old 238Pu-doped Eu-monazite, and a theoretical calculation of the properties of several structural types of orthophosphates. It is shown that actinide-doped monazite is prone to the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-02, Vol.13 (3), p.1203
Hauptverfasser: Mikhailova, Polina, Burakov, Boris, Eremin, Nikolai, Averin, Alexei, Shiryaev, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1203
container_title Sustainability
container_volume 13
creator Mikhailova, Polina
Burakov, Boris
Eremin, Nikolai
Averin, Alexei
Shiryaev, Andrey
description The paper consists of two main parts: a microscopic and spectroscopic investigation of the single crystal of 17-year-old 238Pu-doped Eu-monazite, and a theoretical calculation of the properties of several structural types of orthophosphates. It is shown that actinide-doped monazite is prone to the formation of mechanically weak, poorly crystalline crust, presumably consisting of rhabdophane. Its formation is likely promoted by the formation of peroxides and, potentially, acidic compounds, due to the radiolysis of atmospheric moisture. The calculations of mixing the enthalpies and Gibbs energies of binary solid solutions of Pu and rare earth element (REE) phosphates that were performed for the principal structural types—monazite, xenotime, rhabdophane—show that, in the case of light REEs, the plutonium admixture is preferentially redistributed into the rhabdophane. This process strongly affects the behavior of actinides, leached from a monazite-based waste form. The applications of these results for the development of actinide waste forms are discussed. The current data on the behavior of real actinide-doped monazite suggest that this type of ceramic waste form is not very resistant, even in relatively short time periods.
doi_str_mv 10.3390/su13031203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562203775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562203775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-ed2afcc399253d2f3dbc71f242d10cab0503ccfab5806f4ae4e95b07ce6bea5b3</originalsourceid><addsrcrecordid>eNp9kM1Kw0AQxxdRsNRefIIFb0J0P7JJc9S2fkClHuo5TDYTk9Luxt2NWE8-hE_ok5iqoCfnMsPwY4b_j5Bjzs6kzNi577hkkgsm98hAsJRHnCm2_2c-JCPvV6wvKXnGkwGx9-suWNN0m2hqWyzpnTXw2gSkYEq6CDU6unChtm1tfVtDQP_x9r7s1xtbbg1sGu2_0NlLi67ZoAmwplMIQK2hc2seo2XP0kus4bmx7ogcVLD2OPrpQ_JwNVtObqL54vp2cjGPtBQyRFgKqLSWWSaULEUly0KnvBKxKDnTUPRZpNYVFGrMkioGjDFTBUs1JgWCKuSQnHzfbZ196tCHfGU7Z_qXuVCJ6B2lqfqXiscizlKudtTpN6Wd9d5hlbd9UnDbnLN8Zz7_NS8_AcpPeB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482497155</pqid></control><display><type>article</type><title>Plutonium-Doped Monazite and Other Orthophosphates—Thermodynamics and Experimental Data on Long-Term Behavior</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mikhailova, Polina ; Burakov, Boris ; Eremin, Nikolai ; Averin, Alexei ; Shiryaev, Andrey</creator><creatorcontrib>Mikhailova, Polina ; Burakov, Boris ; Eremin, Nikolai ; Averin, Alexei ; Shiryaev, Andrey</creatorcontrib><description>The paper consists of two main parts: a microscopic and spectroscopic investigation of the single crystal of 17-year-old 238Pu-doped Eu-monazite, and a theoretical calculation of the properties of several structural types of orthophosphates. It is shown that actinide-doped monazite is prone to the formation of mechanically weak, poorly crystalline crust, presumably consisting of rhabdophane. Its formation is likely promoted by the formation of peroxides and, potentially, acidic compounds, due to the radiolysis of atmospheric moisture. The calculations of mixing the enthalpies and Gibbs energies of binary solid solutions of Pu and rare earth element (REE) phosphates that were performed for the principal structural types—monazite, xenotime, rhabdophane—show that, in the case of light REEs, the plutonium admixture is preferentially redistributed into the rhabdophane. This process strongly affects the behavior of actinides, leached from a monazite-based waste form. The applications of these results for the development of actinide waste forms are discussed. The current data on the behavior of real actinide-doped monazite suggest that this type of ceramic waste form is not very resistant, even in relatively short time periods.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13031203</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actinides ; Admixtures ; Atmospheric moisture ; Microscopy ; Monazite ; Nanoparticles ; Nitrogen dioxide ; Orthophosphates ; Peroxides ; Phosphates ; Plutonium ; Radiation ; Radiolysis ; Rare earth elements ; Single crystals ; Solid solutions ; Spectrum analysis ; Sustainability ; Xenotime</subject><ispartof>Sustainability, 2021-02, Vol.13 (3), p.1203</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-ed2afcc399253d2f3dbc71f242d10cab0503ccfab5806f4ae4e95b07ce6bea5b3</citedby><cites>FETCH-LOGICAL-c323t-ed2afcc399253d2f3dbc71f242d10cab0503ccfab5806f4ae4e95b07ce6bea5b3</cites><orcidid>0000-0003-2895-8539 ; 0000-0002-2467-825X ; 0000-0002-4765-3100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Mikhailova, Polina</creatorcontrib><creatorcontrib>Burakov, Boris</creatorcontrib><creatorcontrib>Eremin, Nikolai</creatorcontrib><creatorcontrib>Averin, Alexei</creatorcontrib><creatorcontrib>Shiryaev, Andrey</creatorcontrib><title>Plutonium-Doped Monazite and Other Orthophosphates—Thermodynamics and Experimental Data on Long-Term Behavior</title><title>Sustainability</title><description>The paper consists of two main parts: a microscopic and spectroscopic investigation of the single crystal of 17-year-old 238Pu-doped Eu-monazite, and a theoretical calculation of the properties of several structural types of orthophosphates. It is shown that actinide-doped monazite is prone to the formation of mechanically weak, poorly crystalline crust, presumably consisting of rhabdophane. Its formation is likely promoted by the formation of peroxides and, potentially, acidic compounds, due to the radiolysis of atmospheric moisture. The calculations of mixing the enthalpies and Gibbs energies of binary solid solutions of Pu and rare earth element (REE) phosphates that were performed for the principal structural types—monazite, xenotime, rhabdophane—show that, in the case of light REEs, the plutonium admixture is preferentially redistributed into the rhabdophane. This process strongly affects the behavior of actinides, leached from a monazite-based waste form. The applications of these results for the development of actinide waste forms are discussed. The current data on the behavior of real actinide-doped monazite suggest that this type of ceramic waste form is not very resistant, even in relatively short time periods.</description><subject>Actinides</subject><subject>Admixtures</subject><subject>Atmospheric moisture</subject><subject>Microscopy</subject><subject>Monazite</subject><subject>Nanoparticles</subject><subject>Nitrogen dioxide</subject><subject>Orthophosphates</subject><subject>Peroxides</subject><subject>Phosphates</subject><subject>Plutonium</subject><subject>Radiation</subject><subject>Radiolysis</subject><subject>Rare earth elements</subject><subject>Single crystals</subject><subject>Solid solutions</subject><subject>Spectrum analysis</subject><subject>Sustainability</subject><subject>Xenotime</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1Kw0AQxxdRsNRefIIFb0J0P7JJc9S2fkClHuo5TDYTk9Luxt2NWE8-hE_ok5iqoCfnMsPwY4b_j5Bjzs6kzNi577hkkgsm98hAsJRHnCm2_2c-JCPvV6wvKXnGkwGx9-suWNN0m2hqWyzpnTXw2gSkYEq6CDU6unChtm1tfVtDQP_x9r7s1xtbbg1sGu2_0NlLi67ZoAmwplMIQK2hc2seo2XP0kus4bmx7ogcVLD2OPrpQ_JwNVtObqL54vp2cjGPtBQyRFgKqLSWWSaULEUly0KnvBKxKDnTUPRZpNYVFGrMkioGjDFTBUs1JgWCKuSQnHzfbZ196tCHfGU7Z_qXuVCJ6B2lqfqXiscizlKudtTpN6Wd9d5hlbd9UnDbnLN8Zz7_NS8_AcpPeB8</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Mikhailova, Polina</creator><creator>Burakov, Boris</creator><creator>Eremin, Nikolai</creator><creator>Averin, Alexei</creator><creator>Shiryaev, Andrey</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2895-8539</orcidid><orcidid>https://orcid.org/0000-0002-2467-825X</orcidid><orcidid>https://orcid.org/0000-0002-4765-3100</orcidid></search><sort><creationdate>20210201</creationdate><title>Plutonium-Doped Monazite and Other Orthophosphates—Thermodynamics and Experimental Data on Long-Term Behavior</title><author>Mikhailova, Polina ; Burakov, Boris ; Eremin, Nikolai ; Averin, Alexei ; Shiryaev, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-ed2afcc399253d2f3dbc71f242d10cab0503ccfab5806f4ae4e95b07ce6bea5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actinides</topic><topic>Admixtures</topic><topic>Atmospheric moisture</topic><topic>Microscopy</topic><topic>Monazite</topic><topic>Nanoparticles</topic><topic>Nitrogen dioxide</topic><topic>Orthophosphates</topic><topic>Peroxides</topic><topic>Phosphates</topic><topic>Plutonium</topic><topic>Radiation</topic><topic>Radiolysis</topic><topic>Rare earth elements</topic><topic>Single crystals</topic><topic>Solid solutions</topic><topic>Spectrum analysis</topic><topic>Sustainability</topic><topic>Xenotime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailova, Polina</creatorcontrib><creatorcontrib>Burakov, Boris</creatorcontrib><creatorcontrib>Eremin, Nikolai</creatorcontrib><creatorcontrib>Averin, Alexei</creatorcontrib><creatorcontrib>Shiryaev, Andrey</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailova, Polina</au><au>Burakov, Boris</au><au>Eremin, Nikolai</au><au>Averin, Alexei</au><au>Shiryaev, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plutonium-Doped Monazite and Other Orthophosphates—Thermodynamics and Experimental Data on Long-Term Behavior</atitle><jtitle>Sustainability</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>1203</spage><pages>1203-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The paper consists of two main parts: a microscopic and spectroscopic investigation of the single crystal of 17-year-old 238Pu-doped Eu-monazite, and a theoretical calculation of the properties of several structural types of orthophosphates. It is shown that actinide-doped monazite is prone to the formation of mechanically weak, poorly crystalline crust, presumably consisting of rhabdophane. Its formation is likely promoted by the formation of peroxides and, potentially, acidic compounds, due to the radiolysis of atmospheric moisture. The calculations of mixing the enthalpies and Gibbs energies of binary solid solutions of Pu and rare earth element (REE) phosphates that were performed for the principal structural types—monazite, xenotime, rhabdophane—show that, in the case of light REEs, the plutonium admixture is preferentially redistributed into the rhabdophane. This process strongly affects the behavior of actinides, leached from a monazite-based waste form. The applications of these results for the development of actinide waste forms are discussed. The current data on the behavior of real actinide-doped monazite suggest that this type of ceramic waste form is not very resistant, even in relatively short time periods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su13031203</doi><orcidid>https://orcid.org/0000-0003-2895-8539</orcidid><orcidid>https://orcid.org/0000-0002-2467-825X</orcidid><orcidid>https://orcid.org/0000-0002-4765-3100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2021-02, Vol.13 (3), p.1203
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2562203775
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Actinides
Admixtures
Atmospheric moisture
Microscopy
Monazite
Nanoparticles
Nitrogen dioxide
Orthophosphates
Peroxides
Phosphates
Plutonium
Radiation
Radiolysis
Rare earth elements
Single crystals
Solid solutions
Spectrum analysis
Sustainability
Xenotime
title Plutonium-Doped Monazite and Other Orthophosphates—Thermodynamics and Experimental Data on Long-Term Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plutonium-Doped%20Monazite%20and%20Other%20Orthophosphates%E2%80%94Thermodynamics%20and%20Experimental%20Data%20on%20Long-Term%20Behavior&rft.jtitle=Sustainability&rft.au=Mikhailova,%20Polina&rft.date=2021-02-01&rft.volume=13&rft.issue=3&rft.spage=1203&rft.pages=1203-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13031203&rft_dat=%3Cproquest_cross%3E2562203775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2482497155&rft_id=info:pmid/&rfr_iscdi=true