The Influence of Droplet Dispersity on Droplet Vaporization in the High-Temperature Wet Gas Flow in the Case of Combined Heating
The change in the thermal and energy state of the water droplet is defined numerically. The influence of droplet dispersity on the interaction of the transfer processes was evaluated. In influence of the Stefan flow was considered as well. The internal heat transfer of the droplet was defined by the...
Gespeichert in:
Veröffentlicht in: | Sustainability 2021-04, Vol.13 (7), p.3833 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 3833 |
container_title | Sustainability |
container_volume | 13 |
creator | Miliauskas, Gintautas Puida, Egidijus Poškas, Robertas Poškas, Povilas |
description | The change in the thermal and energy state of the water droplet is defined numerically. The influence of droplet dispersity on the interaction of the transfer processes was evaluated. In influence of the Stefan flow was considered as well. The internal heat transfer of the droplet was defined by the combined heat transfer through effective conductivity and radiation model. The results of the numerical modeling of heat and mass transfer in water droplets in a wet flue gas flow of 1000 °C highlight the influence of the variation in heat transfer regimes in the droplet on the interaction of the transfer processes in consistently varying phase change regimes. The results of the investigation shows that the inner heat convection diminishes intensively in the transitional phase change regime because of a rapid slowdown of the slipping droplet in the gas. The radiation absorption in the droplet clearly decreases only at the final stage of equilibrium evaporation. The highlighted regularities of the interaction between combined transfer processes in water droplets are also valid for liquid fuel and other semi-transparent liquids sprayed into high-temperature flue gas flow. However, a qualitative evaluation should consider individual influence of dispersity that different liquids have. |
doi_str_mv | 10.3390/su13073833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562198893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562198893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-7237f3cc4bb2e8131ad67bd40e91e4a0c7b2b7ccd272648488ba8c6a626746e13</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGo3_oKAO2E0j2mSWUprH1BwU3U5ZDJ32pTpZExmkLrypxutr7u5l8N3z4GD0CUlN5xn5Db0lBPJFecnaMCIpAklY3L67z5HoxB2JA7nNKNigN7XW8DLpqp7aAxgV-Gpd20NHZ7a0IIPtjtg1_yqT7p13r7pzkbRNriL7wu72SZr2Edcd70H_BzBuQ54VrvXH2iiw5f9xO0L20CJFxBNms0FOqt0HWD0vYfocXa_niyS1cN8OblbJYaxcZdIxmXFjUmLgoGinOpSyKJMCWQUUk2MLFghjSmZZCJVqVKFVkZowYRMBVA-RFdH39a7lx5Cl-9c75sYmbOxYDRTKuORuj5SxrsQPFR56-1e-0NOSf5Zcv5XMv8ABX9uzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562198893</pqid></control><display><type>article</type><title>The Influence of Droplet Dispersity on Droplet Vaporization in the High-Temperature Wet Gas Flow in the Case of Combined Heating</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Miliauskas, Gintautas ; Puida, Egidijus ; Poškas, Robertas ; Poškas, Povilas</creator><creatorcontrib>Miliauskas, Gintautas ; Puida, Egidijus ; Poškas, Robertas ; Poškas, Povilas</creatorcontrib><description>The change in the thermal and energy state of the water droplet is defined numerically. The influence of droplet dispersity on the interaction of the transfer processes was evaluated. In influence of the Stefan flow was considered as well. The internal heat transfer of the droplet was defined by the combined heat transfer through effective conductivity and radiation model. The results of the numerical modeling of heat and mass transfer in water droplets in a wet flue gas flow of 1000 °C highlight the influence of the variation in heat transfer regimes in the droplet on the interaction of the transfer processes in consistently varying phase change regimes. The results of the investigation shows that the inner heat convection diminishes intensively in the transitional phase change regime because of a rapid slowdown of the slipping droplet in the gas. The radiation absorption in the droplet clearly decreases only at the final stage of equilibrium evaporation. The highlighted regularities of the interaction between combined transfer processes in water droplets are also valid for liquid fuel and other semi-transparent liquids sprayed into high-temperature flue gas flow. However, a qualitative evaluation should consider individual influence of dispersity that different liquids have.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13073833</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Biodiesel fuels ; Biofuels ; Convection ; Diesel engines ; Diesel fuels ; Dispersion ; Droplets ; Emissions ; Engines ; Evaporation ; Flue gas ; Fossil fuels ; Gas flow ; Gases ; Heat exchangers ; Heat transfer ; High temperature ; Liquid fuels ; Liquids ; Phase change ; Radiation ; Radiation absorption ; Sustainability ; Vaporization ; Water drops</subject><ispartof>Sustainability, 2021-04, Vol.13 (7), p.3833</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-7237f3cc4bb2e8131ad67bd40e91e4a0c7b2b7ccd272648488ba8c6a626746e13</citedby><cites>FETCH-LOGICAL-c225t-7237f3cc4bb2e8131ad67bd40e91e4a0c7b2b7ccd272648488ba8c6a626746e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Miliauskas, Gintautas</creatorcontrib><creatorcontrib>Puida, Egidijus</creatorcontrib><creatorcontrib>Poškas, Robertas</creatorcontrib><creatorcontrib>Poškas, Povilas</creatorcontrib><title>The Influence of Droplet Dispersity on Droplet Vaporization in the High-Temperature Wet Gas Flow in the Case of Combined Heating</title><title>Sustainability</title><description>The change in the thermal and energy state of the water droplet is defined numerically. The influence of droplet dispersity on the interaction of the transfer processes was evaluated. In influence of the Stefan flow was considered as well. The internal heat transfer of the droplet was defined by the combined heat transfer through effective conductivity and radiation model. The results of the numerical modeling of heat and mass transfer in water droplets in a wet flue gas flow of 1000 °C highlight the influence of the variation in heat transfer regimes in the droplet on the interaction of the transfer processes in consistently varying phase change regimes. The results of the investigation shows that the inner heat convection diminishes intensively in the transitional phase change regime because of a rapid slowdown of the slipping droplet in the gas. The radiation absorption in the droplet clearly decreases only at the final stage of equilibrium evaporation. The highlighted regularities of the interaction between combined transfer processes in water droplets are also valid for liquid fuel and other semi-transparent liquids sprayed into high-temperature flue gas flow. However, a qualitative evaluation should consider individual influence of dispersity that different liquids have.</description><subject>Alternative energy sources</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Convection</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Dispersion</subject><subject>Droplets</subject><subject>Emissions</subject><subject>Engines</subject><subject>Evaporation</subject><subject>Flue gas</subject><subject>Fossil fuels</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Liquid fuels</subject><subject>Liquids</subject><subject>Phase change</subject><subject>Radiation</subject><subject>Radiation absorption</subject><subject>Sustainability</subject><subject>Vaporization</subject><subject>Water drops</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkEtLAzEUhYMoWGo3_oKAO2E0j2mSWUprH1BwU3U5ZDJ32pTpZExmkLrypxutr7u5l8N3z4GD0CUlN5xn5Db0lBPJFecnaMCIpAklY3L67z5HoxB2JA7nNKNigN7XW8DLpqp7aAxgV-Gpd20NHZ7a0IIPtjtg1_yqT7p13r7pzkbRNriL7wu72SZr2Edcd70H_BzBuQ54VrvXH2iiw5f9xO0L20CJFxBNms0FOqt0HWD0vYfocXa_niyS1cN8OblbJYaxcZdIxmXFjUmLgoGinOpSyKJMCWQUUk2MLFghjSmZZCJVqVKFVkZowYRMBVA-RFdH39a7lx5Cl-9c75sYmbOxYDRTKuORuj5SxrsQPFR56-1e-0NOSf5Zcv5XMv8ABX9uzg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Miliauskas, Gintautas</creator><creator>Puida, Egidijus</creator><creator>Poškas, Robertas</creator><creator>Poškas, Povilas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>The Influence of Droplet Dispersity on Droplet Vaporization in the High-Temperature Wet Gas Flow in the Case of Combined Heating</title><author>Miliauskas, Gintautas ; Puida, Egidijus ; Poškas, Robertas ; Poškas, Povilas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-7237f3cc4bb2e8131ad67bd40e91e4a0c7b2b7ccd272648488ba8c6a626746e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Convection</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Dispersion</topic><topic>Droplets</topic><topic>Emissions</topic><topic>Engines</topic><topic>Evaporation</topic><topic>Flue gas</topic><topic>Fossil fuels</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Liquid fuels</topic><topic>Liquids</topic><topic>Phase change</topic><topic>Radiation</topic><topic>Radiation absorption</topic><topic>Sustainability</topic><topic>Vaporization</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miliauskas, Gintautas</creatorcontrib><creatorcontrib>Puida, Egidijus</creatorcontrib><creatorcontrib>Poškas, Robertas</creatorcontrib><creatorcontrib>Poškas, Povilas</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miliauskas, Gintautas</au><au>Puida, Egidijus</au><au>Poškas, Robertas</au><au>Poškas, Povilas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Droplet Dispersity on Droplet Vaporization in the High-Temperature Wet Gas Flow in the Case of Combined Heating</atitle><jtitle>Sustainability</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>13</volume><issue>7</issue><spage>3833</spage><pages>3833-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The change in the thermal and energy state of the water droplet is defined numerically. The influence of droplet dispersity on the interaction of the transfer processes was evaluated. In influence of the Stefan flow was considered as well. The internal heat transfer of the droplet was defined by the combined heat transfer through effective conductivity and radiation model. The results of the numerical modeling of heat and mass transfer in water droplets in a wet flue gas flow of 1000 °C highlight the influence of the variation in heat transfer regimes in the droplet on the interaction of the transfer processes in consistently varying phase change regimes. The results of the investigation shows that the inner heat convection diminishes intensively in the transitional phase change regime because of a rapid slowdown of the slipping droplet in the gas. The radiation absorption in the droplet clearly decreases only at the final stage of equilibrium evaporation. The highlighted regularities of the interaction between combined transfer processes in water droplets are also valid for liquid fuel and other semi-transparent liquids sprayed into high-temperature flue gas flow. However, a qualitative evaluation should consider individual influence of dispersity that different liquids have.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su13073833</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2021-04, Vol.13 (7), p.3833 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2562198893 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Alternative energy sources Biodiesel fuels Biofuels Convection Diesel engines Diesel fuels Dispersion Droplets Emissions Engines Evaporation Flue gas Fossil fuels Gas flow Gases Heat exchangers Heat transfer High temperature Liquid fuels Liquids Phase change Radiation Radiation absorption Sustainability Vaporization Water drops |
title | The Influence of Droplet Dispersity on Droplet Vaporization in the High-Temperature Wet Gas Flow in the Case of Combined Heating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Droplet%20Dispersity%20on%20Droplet%20Vaporization%20in%20the%20High-Temperature%20Wet%20Gas%20Flow%20in%20the%20Case%20of%20Combined%20Heating&rft.jtitle=Sustainability&rft.au=Miliauskas,%20Gintautas&rft.date=2021-04-01&rft.volume=13&rft.issue=7&rft.spage=3833&rft.pages=3833-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13073833&rft_dat=%3Cproquest_cross%3E2562198893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562198893&rft_id=info:pmid/&rfr_iscdi=true |