Fabrication of Poly (Acrylonitrile-Co-Methyl Methacrylate) Nanofibers Containing Boron via Electrospinning Method: A Study on Size Distribution, Thermal, Crystalline, and Mechanical Strength Properties

Electrospun polymeric nanofibers have attracted great attention in filtration systems and protective clothes. One of them is polyacrylonitrile (PAN) nanofibers, which are a suitable choice for the fabrication of protective clothes in the defense industry, due to their good fiber formation and easy o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-04, Vol.13 (8), p.4342
Hauptverfasser: Sadeghi, Meisam, Moghimifar, Zahra, Kumar, P. Senthil, Javadian, Hamedreza, Farsadrooh, Majid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrospun polymeric nanofibers have attracted great attention in filtration systems and protective clothes. One of them is polyacrylonitrile (PAN) nanofibers, which are a suitable choice for the fabrication of protective clothes in the defense industry, due to their good fiber formation and easy optimization with chemical reagents. They do not possess adequate properties for protection against chemical, biological, and radiological agents. In this research, poly (acrylonitrile-co-methyl methacrylate) (PANMM) nanofibers and PANMM nanofibers containing 10B were fabricated via the electrospinning method. The study of the morphology of nanofibers, using scanning electron microscopy (SEM), revealed that smooth and knotted fibers with an average diameter of 259 ± 64 nm were obtained, using 12% (w/v) of PANMM in the solution as the optimal concentration for the electrospinning process. This sample was doped with boron (10%, 30%, and 50% (w/w)) to fabricate the samples of PANMM + boric acid (BA) nanofibers. The results demonstrated an increasing trend in the diameter of the nanofibers with an increase in BA up to 50%. At this concentration, smooth fibers were formed with lower knots. Furthermore, the presence of B-O and O-H groups was observed using Fourier transform infrared (FTIR) spectroscopy. To study the tensile properties, the nanofibrous web was tested, and the results showed that introducing 10B to PANMM nanofiber structures reduced the strength of the nanofibers. Thermal gravimetric analysis (TGA) showed that BA-modified PANMM nanofibers had lower thermal degradability, as compared with pure PANMM.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13084342