Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping

This study validated the robust performances of the recently proposed comprehensive landslide susceptibility index model (CLSI) for landslide susceptibility mapping (LSM) by comparing it to the logistic regression (LR) and the analytical hierarchy process information value (AHPIV) model. Zhushan Cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-04, Vol.13 (7), p.3803
Hauptverfasser: Tang, Rui-Xuan, Yan, E-Chuan, Wen, Tao, Yin, Xiao-Meng, Tang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 3803
container_title Sustainability
container_volume 13
creator Tang, Rui-Xuan
Yan, E-Chuan
Wen, Tao
Yin, Xiao-Meng
Tang, Wei
description This study validated the robust performances of the recently proposed comprehensive landslide susceptibility index model (CLSI) for landslide susceptibility mapping (LSM) by comparing it to the logistic regression (LR) and the analytical hierarchy process information value (AHPIV) model. Zhushan County in China, with 373 landslides identified, was used as the study area. Eight conditioning factors (lithology, slope structure, slope angle, altitude, distance to river, stream power index, slope length, distance to road) were acquired from digital elevation models (DEMs), field survey, remote sensing imagery, and government documentary data. Results indicate that the CLSI model has the highest accuracy and the best classification ability, although all three models can produce reasonable landslide susceptibility (LS) maps. The robust performance of the CLSI model is due to its weight determination by a back-propagation neural network (BPNN), which successfully captures the nonlinear relationship between landslide occurrence and the conditioning factors.
doi_str_mv 10.3390/su13073803
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562194742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562194742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-428b534d410cb1c701869f00c186382cf5a1aff57bc4e126cd7117ace0481e1a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGov_oKAN-lqJtnPo5SqhS2CX9clm53UlO1mTXYLPfjfTVHQubwzzPPOwEvIJbAbIQp260cQLBM5EydkwlkGEbCEnf7rz8nM-y0LJQQUkE7I18LueumMtx21mpZ2Y_xgFH3GjUPvje3mdNVp63ZyCAN9l-2Icyq7hh6dDj-w82aPdLkPm8B0G7q2DbY0eGgZON-aBunL6BX2g6lNa4YDXcu-D-gFOdOy9Tj71Sl5u1--Lh6j8ulhtbgrI8WLZIhinteJiJsYmKpBZQzytNCMqaAi50onEqTWSVarGIGnqskAMqmQxTkgSDElVz93e2c_R_RDtbWj68LLiicphyLOYh6o6x9KOeu9Q131zuykO1TAqmPC1V_C4hvKSm8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562194742</pqid></control><display><type>article</type><title>Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Tang, Rui-Xuan ; Yan, E-Chuan ; Wen, Tao ; Yin, Xiao-Meng ; Tang, Wei</creator><creatorcontrib>Tang, Rui-Xuan ; Yan, E-Chuan ; Wen, Tao ; Yin, Xiao-Meng ; Tang, Wei</creatorcontrib><description>This study validated the robust performances of the recently proposed comprehensive landslide susceptibility index model (CLSI) for landslide susceptibility mapping (LSM) by comparing it to the logistic regression (LR) and the analytical hierarchy process information value (AHPIV) model. Zhushan County in China, with 373 landslides identified, was used as the study area. Eight conditioning factors (lithology, slope structure, slope angle, altitude, distance to river, stream power index, slope length, distance to road) were acquired from digital elevation models (DEMs), field survey, remote sensing imagery, and government documentary data. Results indicate that the CLSI model has the highest accuracy and the best classification ability, although all three models can produce reasonable landslide susceptibility (LS) maps. The robust performance of the CLSI model is due to its weight determination by a back-propagation neural network (BPNN), which successfully captures the nonlinear relationship between landslide occurrence and the conditioning factors.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13073803</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Back propagation ; Back propagation networks ; Conditioning ; Decision making ; Digital Elevation Models ; Digital imaging ; Geographic information systems ; Information processing ; Landslides ; Landslides &amp; mudslides ; Lithology ; Machine learning ; Mapping ; Neural networks ; Propagation ; Remote sensing ; Statistical analysis ; Statistical methods ; Support vector machines ; Susceptibility ; Sustainability</subject><ispartof>Sustainability, 2021-04, Vol.13 (7), p.3803</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-428b534d410cb1c701869f00c186382cf5a1aff57bc4e126cd7117ace0481e1a3</citedby><cites>FETCH-LOGICAL-c295t-428b534d410cb1c701869f00c186382cf5a1aff57bc4e126cd7117ace0481e1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tang, Rui-Xuan</creatorcontrib><creatorcontrib>Yan, E-Chuan</creatorcontrib><creatorcontrib>Wen, Tao</creatorcontrib><creatorcontrib>Yin, Xiao-Meng</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><title>Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping</title><title>Sustainability</title><description>This study validated the robust performances of the recently proposed comprehensive landslide susceptibility index model (CLSI) for landslide susceptibility mapping (LSM) by comparing it to the logistic regression (LR) and the analytical hierarchy process information value (AHPIV) model. Zhushan County in China, with 373 landslides identified, was used as the study area. Eight conditioning factors (lithology, slope structure, slope angle, altitude, distance to river, stream power index, slope length, distance to road) were acquired from digital elevation models (DEMs), field survey, remote sensing imagery, and government documentary data. Results indicate that the CLSI model has the highest accuracy and the best classification ability, although all three models can produce reasonable landslide susceptibility (LS) maps. The robust performance of the CLSI model is due to its weight determination by a back-propagation neural network (BPNN), which successfully captures the nonlinear relationship between landslide occurrence and the conditioning factors.</description><subject>Accuracy</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Conditioning</subject><subject>Decision making</subject><subject>Digital Elevation Models</subject><subject>Digital imaging</subject><subject>Geographic information systems</subject><subject>Information processing</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Lithology</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>Propagation</subject><subject>Remote sensing</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Support vector machines</subject><subject>Susceptibility</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE1LAzEQhoMoWGov_oKAN-lqJtnPo5SqhS2CX9clm53UlO1mTXYLPfjfTVHQubwzzPPOwEvIJbAbIQp260cQLBM5EydkwlkGEbCEnf7rz8nM-y0LJQQUkE7I18LueumMtx21mpZ2Y_xgFH3GjUPvje3mdNVp63ZyCAN9l-2Icyq7hh6dDj-w82aPdLkPm8B0G7q2DbY0eGgZON-aBunL6BX2g6lNa4YDXcu-D-gFOdOy9Tj71Sl5u1--Lh6j8ulhtbgrI8WLZIhinteJiJsYmKpBZQzytNCMqaAi50onEqTWSVarGIGnqskAMqmQxTkgSDElVz93e2c_R_RDtbWj68LLiicphyLOYh6o6x9KOeu9Q131zuykO1TAqmPC1V_C4hvKSm8Y</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Tang, Rui-Xuan</creator><creator>Yan, E-Chuan</creator><creator>Wen, Tao</creator><creator>Yin, Xiao-Meng</creator><creator>Tang, Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping</title><author>Tang, Rui-Xuan ; Yan, E-Chuan ; Wen, Tao ; Yin, Xiao-Meng ; Tang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-428b534d410cb1c701869f00c186382cf5a1aff57bc4e126cd7117ace0481e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Conditioning</topic><topic>Decision making</topic><topic>Digital Elevation Models</topic><topic>Digital imaging</topic><topic>Geographic information systems</topic><topic>Information processing</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Lithology</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>Propagation</topic><topic>Remote sensing</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Support vector machines</topic><topic>Susceptibility</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Rui-Xuan</creatorcontrib><creatorcontrib>Yan, E-Chuan</creatorcontrib><creatorcontrib>Wen, Tao</creatorcontrib><creatorcontrib>Yin, Xiao-Meng</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Rui-Xuan</au><au>Yan, E-Chuan</au><au>Wen, Tao</au><au>Yin, Xiao-Meng</au><au>Tang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping</atitle><jtitle>Sustainability</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>13</volume><issue>7</issue><spage>3803</spage><pages>3803-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This study validated the robust performances of the recently proposed comprehensive landslide susceptibility index model (CLSI) for landslide susceptibility mapping (LSM) by comparing it to the logistic regression (LR) and the analytical hierarchy process information value (AHPIV) model. Zhushan County in China, with 373 landslides identified, was used as the study area. Eight conditioning factors (lithology, slope structure, slope angle, altitude, distance to river, stream power index, slope length, distance to road) were acquired from digital elevation models (DEMs), field survey, remote sensing imagery, and government documentary data. Results indicate that the CLSI model has the highest accuracy and the best classification ability, although all three models can produce reasonable landslide susceptibility (LS) maps. The robust performance of the CLSI model is due to its weight determination by a back-propagation neural network (BPNN), which successfully captures the nonlinear relationship between landslide occurrence and the conditioning factors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su13073803</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2021-04, Vol.13 (7), p.3803
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2562194742
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Back propagation
Back propagation networks
Conditioning
Decision making
Digital Elevation Models
Digital imaging
Geographic information systems
Information processing
Landslides
Landslides & mudslides
Lithology
Machine learning
Mapping
Neural networks
Propagation
Remote sensing
Statistical analysis
Statistical methods
Support vector machines
Susceptibility
Sustainability
title Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Logistic%20Regression,%20Information%20Value,%20and%20Comprehensive%20Evaluating%20Model%20for%20Landslide%20Susceptibility%20Mapping&rft.jtitle=Sustainability&rft.au=Tang,%20Rui-Xuan&rft.date=2021-04-01&rft.volume=13&rft.issue=7&rft.spage=3803&rft.pages=3803-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13073803&rft_dat=%3Cproquest_cross%3E2562194742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562194742&rft_id=info:pmid/&rfr_iscdi=true