Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction

Summary The unobserved components time series model with stochastic volatility has gained much interest in econometrics, especially for the purpose of modelling and forecasting inflation. We present a feasible simulated maximum likelihood method for parameter estimation from a classical perspective....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2021-08, Vol.36 (5), p.614-627
Hauptverfasser: Li, Mengheng, Koopman, Siem Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 627
container_issue 5
container_start_page 614
container_title Journal of applied econometrics (Chichester, England)
container_volume 36
creator Li, Mengheng
Koopman, Siem Jan
description Summary The unobserved components time series model with stochastic volatility has gained much interest in econometrics, especially for the purpose of modelling and forecasting inflation. We present a feasible simulated maximum likelihood method for parameter estimation from a classical perspective. The method can also be used for evaluating the marginal likelihood function in a Bayesian analysis. We show that our simulation‐based method is computationally feasible, for both univariate and multivariate models. We assess the performance of the method in a Monte Carlo study. In an empirical study, we analyse U.S. headline inflation using different univariate and multivariate model specifications.
doi_str_mv 10.1002/jae.2831
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562158398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562158398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3601-a3a445340c30f2c7e6393a718fb885ac0518f289a5a6640ebcf8a5aeef1b7fc03</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcQRLbNikjO04cdhVVcuPKrGAri3HdairNC522tIdR-CMnASnZctq3jx9M3p6CF0TGBAAerdUZkAFIyeoR6AoEkI5P0U9EIIlOeX0HF2EsASADCDvITNrXBmM35o51m61do1p2oB3tl3g0Dq9UKG1Gm9drVpb23Z_j1_tatNtrvn5-i5ViJcmQquDhVUzx8G-N6rG5rP1SnfuJTqrVB3M1d_so9lk_DZ6TKYvD0-j4TTRLAOSKKbSlLMUNIOK6txkrGAqJ6IqheBKA4-SikJxlWUpmFJXImpjKlLmlQbWRzfHv2vvPjYxlVy6jY9ZgqQ8o4QLVohI3R4p7V0I3lRy7WN8v5cEZFeijCXKrsSIJkd0Z2uz_5eTz8Pxgf8FTOl17Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562158398</pqid></control><display><type>article</type><title>Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Mengheng ; Koopman, Siem Jan</creator><creatorcontrib>Li, Mengheng ; Koopman, Siem Jan</creatorcontrib><description>Summary The unobserved components time series model with stochastic volatility has gained much interest in econometrics, especially for the purpose of modelling and forecasting inflation. We present a feasible simulated maximum likelihood method for parameter estimation from a classical perspective. The method can also be used for evaluating the marginal likelihood function in a Bayesian analysis. We show that our simulation‐based method is computationally feasible, for both univariate and multivariate models. We assess the performance of the method in a Monte Carlo study. In an empirical study, we analyse U.S. headline inflation using different univariate and multivariate model specifications.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.2831</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Bayesian analysis ; Econometrics ; Empirical analysis ; Extraction ; Inflation ; Maximum likelihood estimation ; Maximum likelihood method ; Monte Carlo simulation ; Multivariate analysis ; Parameter estimation ; Simulation ; Time series ; Volatility</subject><ispartof>Journal of applied econometrics (Chichester, England), 2021-08, Vol.36 (5), p.614-627</ispartof><rights>2021 The Authors. Journal of Applied Econometrics Published by John Wiley &amp; Sons, Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3601-a3a445340c30f2c7e6393a718fb885ac0518f289a5a6640ebcf8a5aeef1b7fc03</citedby><cites>FETCH-LOGICAL-c3601-a3a445340c30f2c7e6393a718fb885ac0518f289a5a6640ebcf8a5aeef1b7fc03</cites><orcidid>0000-0002-4440-9524 ; 0000-0002-8807-7277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjae.2831$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjae.2831$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Li, Mengheng</creatorcontrib><creatorcontrib>Koopman, Siem Jan</creatorcontrib><title>Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction</title><title>Journal of applied econometrics (Chichester, England)</title><description>Summary The unobserved components time series model with stochastic volatility has gained much interest in econometrics, especially for the purpose of modelling and forecasting inflation. We present a feasible simulated maximum likelihood method for parameter estimation from a classical perspective. The method can also be used for evaluating the marginal likelihood function in a Bayesian analysis. We show that our simulation‐based method is computationally feasible, for both univariate and multivariate models. We assess the performance of the method in a Monte Carlo study. In an empirical study, we analyse U.S. headline inflation using different univariate and multivariate model specifications.</description><subject>Bayesian analysis</subject><subject>Econometrics</subject><subject>Empirical analysis</subject><subject>Extraction</subject><subject>Inflation</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><subject>Parameter estimation</subject><subject>Simulation</subject><subject>Time series</subject><subject>Volatility</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kE1OwzAQhS0EEqUgcQRLbNikjO04cdhVVcuPKrGAri3HdairNC522tIdR-CMnASnZctq3jx9M3p6CF0TGBAAerdUZkAFIyeoR6AoEkI5P0U9EIIlOeX0HF2EsASADCDvITNrXBmM35o51m61do1p2oB3tl3g0Dq9UKG1Gm9drVpb23Z_j1_tatNtrvn5-i5ViJcmQquDhVUzx8G-N6rG5rP1SnfuJTqrVB3M1d_so9lk_DZ6TKYvD0-j4TTRLAOSKKbSlLMUNIOK6txkrGAqJ6IqheBKA4-SikJxlWUpmFJXImpjKlLmlQbWRzfHv2vvPjYxlVy6jY9ZgqQ8o4QLVohI3R4p7V0I3lRy7WN8v5cEZFeijCXKrsSIJkd0Z2uz_5eTz8Pxgf8FTOl17Q</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Li, Mengheng</creator><creator>Koopman, Siem Jan</creator><general>Wiley Periodicals Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-4440-9524</orcidid><orcidid>https://orcid.org/0000-0002-8807-7277</orcidid></search><sort><creationdate>202108</creationdate><title>Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction</title><author>Li, Mengheng ; Koopman, Siem Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3601-a3a445340c30f2c7e6393a718fb885ac0518f289a5a6640ebcf8a5aeef1b7fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Econometrics</topic><topic>Empirical analysis</topic><topic>Extraction</topic><topic>Inflation</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><topic>Parameter estimation</topic><topic>Simulation</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengheng</creatorcontrib><creatorcontrib>Koopman, Siem Jan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengheng</au><au>Koopman, Siem Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>2021-08</date><risdate>2021</risdate><volume>36</volume><issue>5</issue><spage>614</spage><epage>627</epage><pages>614-627</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><abstract>Summary The unobserved components time series model with stochastic volatility has gained much interest in econometrics, especially for the purpose of modelling and forecasting inflation. We present a feasible simulated maximum likelihood method for parameter estimation from a classical perspective. The method can also be used for evaluating the marginal likelihood function in a Bayesian analysis. We show that our simulation‐based method is computationally feasible, for both univariate and multivariate models. We assess the performance of the method in a Monte Carlo study. In an empirical study, we analyse U.S. headline inflation using different univariate and multivariate model specifications.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/jae.2831</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4440-9524</orcidid><orcidid>https://orcid.org/0000-0002-8807-7277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2021-08, Vol.36 (5), p.614-627
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_2562158398
source Wiley Online Library Journals Frontfile Complete
subjects Bayesian analysis
Econometrics
Empirical analysis
Extraction
Inflation
Maximum likelihood estimation
Maximum likelihood method
Monte Carlo simulation
Multivariate analysis
Parameter estimation
Simulation
Time series
Volatility
title Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unobserved%20components%20with%20stochastic%20volatility:%20Simulation%E2%80%90based%20estimation%20and%20signal%20extraction&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Li,%20Mengheng&rft.date=2021-08&rft.volume=36&rft.issue=5&rft.spage=614&rft.epage=627&rft.pages=614-627&rft.issn=0883-7252&rft.eissn=1099-1255&rft_id=info:doi/10.1002/jae.2831&rft_dat=%3Cproquest_cross%3E2562158398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562158398&rft_id=info:pmid/&rfr_iscdi=true