Modelling the statistical dependence of rainfall variables using copula: A case study of Terengganu state
Extreme rainfall can have severe negative impacts possibly resulting in loss of life and property, hence the need for means of predicting the occurrence of extreme rainfall. One method that addresses extreme phenomena is the extreme value theory. In bivariate data, extreme value analysis can be appr...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-02, Vol.767 (1), p.12047 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12047 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 767 |
creator | Fauzi, M F Rauf, U F Abdul Khan, R Jamaludin, N A A |
description | Extreme rainfall can have severe negative impacts possibly resulting in loss of life and property, hence the need for means of predicting the occurrence of extreme rainfall. One method that addresses extreme phenomena is the extreme value theory. In bivariate data, extreme value analysis can be approximated by the distribution of maximum likelihood estimation. This paper discusses the role of the copula in modeling the structure of dependencies between two rainfall variables, namely duration, and severity. Goodness-of-fit approaches are used to resolve whether or not to reject a parametric copula which then determines the best copula to utilise for the data set. In this paper the Akaike information criterion (AIC) is investigated for its ability to choose an appropriate copula model from Archimedean copula models. The analysis shows that the Frank copula is the best model to explain the dependency structure of the two variables discussed. |
doi_str_mv | 10.1088/1757-899X/767/1/012047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562143083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562143083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3127-db9158cc05d066a788f257fbd42740bff1fb2d0f14223a8b3bdcd0285781894e3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObpGmTejfGpsKGF07wLqT5mBm1rUkr7N_bWpkIglfnwHmf98ADwCVGNxhxHmOWsojn-UvMMhbjGGGCKDsCk8Ph-LBzfArOQtghlDFK0QS4da1NWbpqC9tXA0MrWxdap2QJtWlMpU2lDKwt9NJVVpYl_JDeyaI0AXZhwFTddKW8hTOoZBgaOr0fgI3xptpuZdV9tZpzcNLzwVx8zyl4Xi428_to9Xj3MJ-tIpVgwiJd5DjlSqFUoyyTjHNLUmYLTQmjqLAW24JoZDElJJG8SAqtNCI8ZRzznJpkCq7G3sbX750JrdjVna_6l4KkGcE0QTzpU9mYUr4OwRsrGu_epN8LjMSgVQzGxGBP9FoFFqPWHiQj6Ormp_lf6PoPaP20-BUTjbbJJ2ONh_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562143083</pqid></control><display><type>article</type><title>Modelling the statistical dependence of rainfall variables using copula: A case study of Terengganu state</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Fauzi, M F ; Rauf, U F Abdul ; Khan, R ; Jamaludin, N A A</creator><creatorcontrib>Fauzi, M F ; Rauf, U F Abdul ; Khan, R ; Jamaludin, N A A</creatorcontrib><description>Extreme rainfall can have severe negative impacts possibly resulting in loss of life and property, hence the need for means of predicting the occurrence of extreme rainfall. One method that addresses extreme phenomena is the extreme value theory. In bivariate data, extreme value analysis can be approximated by the distribution of maximum likelihood estimation. This paper discusses the role of the copula in modeling the structure of dependencies between two rainfall variables, namely duration, and severity. Goodness-of-fit approaches are used to resolve whether or not to reject a parametric copula which then determines the best copula to utilise for the data set. In this paper the Akaike information criterion (AIC) is investigated for its ability to choose an appropriate copula model from Archimedean copula models. The analysis shows that the Frank copula is the best model to explain the dependency structure of the two variables discussed.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/767/1/012047</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bivariate analysis ; Extreme value theory ; Extreme values ; Goodness of fit ; Maximum likelihood estimation ; Rainfall</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-02, Vol.767 (1), p.12047</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3127-db9158cc05d066a788f257fbd42740bff1fb2d0f14223a8b3bdcd0285781894e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/767/1/012047/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Fauzi, M F</creatorcontrib><creatorcontrib>Rauf, U F Abdul</creatorcontrib><creatorcontrib>Khan, R</creatorcontrib><creatorcontrib>Jamaludin, N A A</creatorcontrib><title>Modelling the statistical dependence of rainfall variables using copula: A case study of Terengganu state</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Extreme rainfall can have severe negative impacts possibly resulting in loss of life and property, hence the need for means of predicting the occurrence of extreme rainfall. One method that addresses extreme phenomena is the extreme value theory. In bivariate data, extreme value analysis can be approximated by the distribution of maximum likelihood estimation. This paper discusses the role of the copula in modeling the structure of dependencies between two rainfall variables, namely duration, and severity. Goodness-of-fit approaches are used to resolve whether or not to reject a parametric copula which then determines the best copula to utilise for the data set. In this paper the Akaike information criterion (AIC) is investigated for its ability to choose an appropriate copula model from Archimedean copula models. The analysis shows that the Frank copula is the best model to explain the dependency structure of the two variables discussed.</description><subject>Bivariate analysis</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Goodness of fit</subject><subject>Maximum likelihood estimation</subject><subject>Rainfall</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObpGmTejfGpsKGF07wLqT5mBm1rUkr7N_bWpkIglfnwHmf98ADwCVGNxhxHmOWsojn-UvMMhbjGGGCKDsCk8Ph-LBzfArOQtghlDFK0QS4da1NWbpqC9tXA0MrWxdap2QJtWlMpU2lDKwt9NJVVpYl_JDeyaI0AXZhwFTddKW8hTOoZBgaOr0fgI3xptpuZdV9tZpzcNLzwVx8zyl4Xi428_to9Xj3MJ-tIpVgwiJd5DjlSqFUoyyTjHNLUmYLTQmjqLAW24JoZDElJJG8SAqtNCI8ZRzznJpkCq7G3sbX750JrdjVna_6l4KkGcE0QTzpU9mYUr4OwRsrGu_epN8LjMSgVQzGxGBP9FoFFqPWHiQj6Ormp_lf6PoPaP20-BUTjbbJJ2ONh_A</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Fauzi, M F</creator><creator>Rauf, U F Abdul</creator><creator>Khan, R</creator><creator>Jamaludin, N A A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200201</creationdate><title>Modelling the statistical dependence of rainfall variables using copula: A case study of Terengganu state</title><author>Fauzi, M F ; Rauf, U F Abdul ; Khan, R ; Jamaludin, N A A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3127-db9158cc05d066a788f257fbd42740bff1fb2d0f14223a8b3bdcd0285781894e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bivariate analysis</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Goodness of fit</topic><topic>Maximum likelihood estimation</topic><topic>Rainfall</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fauzi, M F</creatorcontrib><creatorcontrib>Rauf, U F Abdul</creatorcontrib><creatorcontrib>Khan, R</creatorcontrib><creatorcontrib>Jamaludin, N A A</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fauzi, M F</au><au>Rauf, U F Abdul</au><au>Khan, R</au><au>Jamaludin, N A A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the statistical dependence of rainfall variables using copula: A case study of Terengganu state</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>767</volume><issue>1</issue><spage>12047</spage><pages>12047-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Extreme rainfall can have severe negative impacts possibly resulting in loss of life and property, hence the need for means of predicting the occurrence of extreme rainfall. One method that addresses extreme phenomena is the extreme value theory. In bivariate data, extreme value analysis can be approximated by the distribution of maximum likelihood estimation. This paper discusses the role of the copula in modeling the structure of dependencies between two rainfall variables, namely duration, and severity. Goodness-of-fit approaches are used to resolve whether or not to reject a parametric copula which then determines the best copula to utilise for the data set. In this paper the Akaike information criterion (AIC) is investigated for its ability to choose an appropriate copula model from Archimedean copula models. The analysis shows that the Frank copula is the best model to explain the dependency structure of the two variables discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/767/1/012047</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-02, Vol.767 (1), p.12047 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562143083 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Bivariate analysis Extreme value theory Extreme values Goodness of fit Maximum likelihood estimation Rainfall |
title | Modelling the statistical dependence of rainfall variables using copula: A case study of Terengganu state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20statistical%20dependence%20of%20rainfall%20variables%20using%20copula:%20A%20case%20study%20of%20Terengganu%20state&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Fauzi,%20M%20F&rft.date=2020-02-01&rft.volume=767&rft.issue=1&rft.spage=12047&rft.pages=12047-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/767/1/012047&rft_dat=%3Cproquest_iop_j%3E2562143083%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562143083&rft_id=info:pmid/&rfr_iscdi=true |