An empirical comparison between stochastic and deterministic centroid initialisation for K-means variations

K-Means is one of the most used algorithms for data clustering and the usual clustering method for benchmarking. Despite its wide application it is well-known that it suffers from a series of disadvantages; it is only able to find local minima and the positions of the initial clustering centres (cen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2021-08, Vol.110 (8), p.1975-2003
Hauptverfasser: Vouros, Avgoustinos, Langdell, Stephen, Croucher, Mike, Vasilaki, Eleni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!