Improving total sediment load prediction using genetic programming technique (Case Study: Malaysia)
Predicted total sediment load is usually used to identify the intensity of a sedimentation process. Currently, the existing available models to predict total load are mostly developed based on data collected from flumes, channels and rivers located in western countries. These models known as sedimen...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-01, Vol.736 (2), p.22108 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 22108 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 736 |
creator | Ahmad Abdul Ghani, N A Kamal, N A Ariffin, J |
description | Predicted total sediment load is usually used to identify the intensity of a sedimentation process. Currently, the existing available models to predict total load are mostly developed based on data collected from flumes, channels and rivers located in western countries. These models known as sediment transport model may not be valid to predict total sediment load of rivers in the tropics due to significant differences in the hydrological and sediment characteristics conditions. A new technique called Genetic programming (GP) technique is used to develop a new model to improve the prediction of total sediment load for rivers in tropical Malaysia. The new model named Evolutionary Polynomial Regression (EPR) model is compared with other three available sediment transport models using the different techniques including, Regression Equation, Modified Graf and Multiple Regression. Statistical analyses based on 82 data sets show the sediment transport model using this new technique perform well compare to other models. |
doi_str_mv | 10.1088/1757-899X/736/2/022108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561994381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561994381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3068-c0c5fde4f8c13dca7f000df2bb6ca173843386d2c3bb855c7e535dd2ec15ad413</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLezIvafDRt6p2MqYMNL6bgXUiTdHa0TU1aYf_e1spEELzKx3mfcw4PAJcY3WDEeYgTlgQ8TV_DhMYhCREh_f8RmBwKx4c7x6fgzPsdQnESRWgC1LJqnP0o6i1sbStL6I0uKlO3sLRSw8b1T9UWtoadH0JbU5u2UH3Bbp2sqi_QqLe6eO8MnM2lN3DTdnp_C9eylHtfyOtzcJLL0puL73MKXu4Xz_PHYPX0sJzfrQJFUcwDhRTLtYlyrjDVSiY5QkjnJMtiJXFCeUQpjzVRNMs4YyoxjDKtiVGYSR1hOgVXY99-uX4b34qd7VzdjxSExThNI8qHVDymlLPeO5OLxhWVdHuBkRiEisGVGLyJXqggYhTag2QEC9v8dP4Xmv0BrTeLXzHR6Jx-AsUghso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561994381</pqid></control><display><type>article</type><title>Improving total sediment load prediction using genetic programming technique (Case Study: Malaysia)</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahmad Abdul Ghani, N A ; Kamal, N A ; Ariffin, J</creator><creatorcontrib>Ahmad Abdul Ghani, N A ; Kamal, N A ; Ariffin, J</creatorcontrib><description>Predicted total sediment load is usually used to identify the intensity of a sedimentation process. Currently, the existing available models to predict total load are mostly developed based on data collected from flumes, channels and rivers located in western countries. These models known as sediment transport model may not be valid to predict total sediment load of rivers in the tropics due to significant differences in the hydrological and sediment characteristics conditions. A new technique called Genetic programming (GP) technique is used to develop a new model to improve the prediction of total sediment load for rivers in tropical Malaysia. The new model named Evolutionary Polynomial Regression (EPR) model is compared with other three available sediment transport models using the different techniques including, Regression Equation, Modified Graf and Multiple Regression. Statistical analyses based on 82 data sets show the sediment transport model using this new technique perform well compare to other models.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/736/2/022108</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Flumes ; Genetic algorithms ; Hydrology ; Polynomials ; Predictions ; Regression models ; Rivers ; Sediment transport ; Statistical analysis</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-01, Vol.736 (2), p.22108</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3068-c0c5fde4f8c13dca7f000df2bb6ca173843386d2c3bb855c7e535dd2ec15ad413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/736/2/022108/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Ahmad Abdul Ghani, N A</creatorcontrib><creatorcontrib>Kamal, N A</creatorcontrib><creatorcontrib>Ariffin, J</creatorcontrib><title>Improving total sediment load prediction using genetic programming technique (Case Study: Malaysia)</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Predicted total sediment load is usually used to identify the intensity of a sedimentation process. Currently, the existing available models to predict total load are mostly developed based on data collected from flumes, channels and rivers located in western countries. These models known as sediment transport model may not be valid to predict total sediment load of rivers in the tropics due to significant differences in the hydrological and sediment characteristics conditions. A new technique called Genetic programming (GP) technique is used to develop a new model to improve the prediction of total sediment load for rivers in tropical Malaysia. The new model named Evolutionary Polynomial Regression (EPR) model is compared with other three available sediment transport models using the different techniques including, Regression Equation, Modified Graf and Multiple Regression. Statistical analyses based on 82 data sets show the sediment transport model using this new technique perform well compare to other models.</description><subject>Flumes</subject><subject>Genetic algorithms</subject><subject>Hydrology</subject><subject>Polynomials</subject><subject>Predictions</subject><subject>Regression models</subject><subject>Rivers</subject><subject>Sediment transport</subject><subject>Statistical analysis</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLezIvafDRt6p2MqYMNL6bgXUiTdHa0TU1aYf_e1spEELzKx3mfcw4PAJcY3WDEeYgTlgQ8TV_DhMYhCREh_f8RmBwKx4c7x6fgzPsdQnESRWgC1LJqnP0o6i1sbStL6I0uKlO3sLRSw8b1T9UWtoadH0JbU5u2UH3Bbp2sqi_QqLe6eO8MnM2lN3DTdnp_C9eylHtfyOtzcJLL0puL73MKXu4Xz_PHYPX0sJzfrQJFUcwDhRTLtYlyrjDVSiY5QkjnJMtiJXFCeUQpjzVRNMs4YyoxjDKtiVGYSR1hOgVXY99-uX4b34qd7VzdjxSExThNI8qHVDymlLPeO5OLxhWVdHuBkRiEisGVGLyJXqggYhTag2QEC9v8dP4Xmv0BrTeLXzHR6Jx-AsUghso</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ahmad Abdul Ghani, N A</creator><creator>Kamal, N A</creator><creator>Ariffin, J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200101</creationdate><title>Improving total sediment load prediction using genetic programming technique (Case Study: Malaysia)</title><author>Ahmad Abdul Ghani, N A ; Kamal, N A ; Ariffin, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3068-c0c5fde4f8c13dca7f000df2bb6ca173843386d2c3bb855c7e535dd2ec15ad413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Flumes</topic><topic>Genetic algorithms</topic><topic>Hydrology</topic><topic>Polynomials</topic><topic>Predictions</topic><topic>Regression models</topic><topic>Rivers</topic><topic>Sediment transport</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad Abdul Ghani, N A</creatorcontrib><creatorcontrib>Kamal, N A</creatorcontrib><creatorcontrib>Ariffin, J</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad Abdul Ghani, N A</au><au>Kamal, N A</au><au>Ariffin, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving total sediment load prediction using genetic programming technique (Case Study: Malaysia)</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>736</volume><issue>2</issue><spage>22108</spage><pages>22108-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Predicted total sediment load is usually used to identify the intensity of a sedimentation process. Currently, the existing available models to predict total load are mostly developed based on data collected from flumes, channels and rivers located in western countries. These models known as sediment transport model may not be valid to predict total sediment load of rivers in the tropics due to significant differences in the hydrological and sediment characteristics conditions. A new technique called Genetic programming (GP) technique is used to develop a new model to improve the prediction of total sediment load for rivers in tropical Malaysia. The new model named Evolutionary Polynomial Regression (EPR) model is compared with other three available sediment transport models using the different techniques including, Regression Equation, Modified Graf and Multiple Regression. Statistical analyses based on 82 data sets show the sediment transport model using this new technique perform well compare to other models.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/736/2/022108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-01, Vol.736 (2), p.22108 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2561994381 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Flumes Genetic algorithms Hydrology Polynomials Predictions Regression models Rivers Sediment transport Statistical analysis |
title | Improving total sediment load prediction using genetic programming technique (Case Study: Malaysia) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20total%20sediment%20load%20prediction%20using%20genetic%20programming%20technique%20(Case%20Study:%20Malaysia)&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Ahmad%20Abdul%20Ghani,%20N%20A&rft.date=2020-01-01&rft.volume=736&rft.issue=2&rft.spage=22108&rft.pages=22108-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/736/2/022108&rft_dat=%3Cproquest_cross%3E2561994381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561994381&rft_id=info:pmid/&rfr_iscdi=true |