New lower bound for Lee discrepancy of asymmetrical factorials
Lee discrepancy has wide applications in design of experiments, which can be used to measure the uniformity of fractional factorials. An improved lower bound of Lee discrepancy for asymmetrical factorials with mixed two-, three- and four-level is presented. The new lower bound is more accurate for a...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2020-08, Vol.61 (4), p.1763-1772 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1772 |
---|---|
container_issue | 4 |
container_start_page | 1763 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 61 |
creator | Hu, Liuping Chatterjee, Kashinath Liu, Jiaqi Ou, Zujun |
description | Lee discrepancy has wide applications in design of experiments, which can be used to measure the uniformity of fractional factorials. An improved lower bound of Lee discrepancy for asymmetrical factorials with mixed two-, three- and four-level is presented. The new lower bound is more accurate for a lot of designs than other existing lower bound, which is a useful complement to the lower bounds of Lee discrepancy and can be served as a benchmark to search uniform designs with mixed levels in terms of Lee discrepancy. |
doi_str_mv | 10.1007/s00362-018-0998-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561677873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030541610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-f1d1ac21f451f85fb39df7f8d363d4d8d9eb6ffe1e4146cef1d54e4d95404abf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMoWKs_wF3AdfTLJJPHRpDiC4pudB0yeciUdlKTKaX_3sgIrnR1N-feCwehSwrXFEDeFAAmGgJUEdBaEX2EZlRQRrTU6hjNQLOGtNCIU3RWygoqqBTM0O1L2ON12oeMu7QbPI4p42UI2PfF5bC1gzvgFLEth80mjLl3do2jdWPKvV2Xc3QSa4SLn5yj94f7t8UTWb4-Pi_ulsQxKUcSqafWNTTylkbVxo5pH2VUngnmuVdeh07EGGjglAsXKt_ywL1uOXDbRTZHV9PuNqfPXSijWaVdHuqlaVpBhZRKsn8pYNDyagQqRSfK5VRKDtFsc7-x-WAomG-ZZpJpqiPzLdPo2mmmTqns8BHy7_LfpS-fIHa2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030541610</pqid></control><display><type>article</type><title>New lower bound for Lee discrepancy of asymmetrical factorials</title><source>Springer journals</source><source>Business Source Complete</source><creator>Hu, Liuping ; Chatterjee, Kashinath ; Liu, Jiaqi ; Ou, Zujun</creator><creatorcontrib>Hu, Liuping ; Chatterjee, Kashinath ; Liu, Jiaqi ; Ou, Zujun</creatorcontrib><description>Lee discrepancy has wide applications in design of experiments, which can be used to measure the uniformity of fractional factorials. An improved lower bound of Lee discrepancy for asymmetrical factorials with mixed two-, three- and four-level is presented. The new lower bound is more accurate for a lot of designs than other existing lower bound, which is a useful complement to the lower bounds of Lee discrepancy and can be served as a benchmark to search uniform designs with mixed levels in terms of Lee discrepancy.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-018-0998-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymmetry ; Design of experiments ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Factorials ; Finance ; Insurance ; Lower bounds ; Management ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Regular Article ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2020-08, Vol.61 (4), p.1763-1772</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Statistical Papers is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-f1d1ac21f451f85fb39df7f8d363d4d8d9eb6ffe1e4146cef1d54e4d95404abf3</citedby><cites>FETCH-LOGICAL-c377t-f1d1ac21f451f85fb39df7f8d363d4d8d9eb6ffe1e4146cef1d54e4d95404abf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-018-0998-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-018-0998-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Liuping</creatorcontrib><creatorcontrib>Chatterjee, Kashinath</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Ou, Zujun</creatorcontrib><title>New lower bound for Lee discrepancy of asymmetrical factorials</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>Lee discrepancy has wide applications in design of experiments, which can be used to measure the uniformity of fractional factorials. An improved lower bound of Lee discrepancy for asymmetrical factorials with mixed two-, three- and four-level is presented. The new lower bound is more accurate for a lot of designs than other existing lower bound, which is a useful complement to the lower bounds of Lee discrepancy and can be served as a benchmark to search uniform designs with mixed levels in terms of Lee discrepancy.</description><subject>Asymmetry</subject><subject>Design of experiments</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Factorials</subject><subject>Finance</subject><subject>Insurance</subject><subject>Lower bounds</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regular Article</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEYRYMoWKs_wF3AdfTLJJPHRpDiC4pudB0yeciUdlKTKaX_3sgIrnR1N-feCwehSwrXFEDeFAAmGgJUEdBaEX2EZlRQRrTU6hjNQLOGtNCIU3RWygoqqBTM0O1L2ON12oeMu7QbPI4p42UI2PfF5bC1gzvgFLEth80mjLl3do2jdWPKvV2Xc3QSa4SLn5yj94f7t8UTWb4-Pi_ulsQxKUcSqafWNTTylkbVxo5pH2VUngnmuVdeh07EGGjglAsXKt_ywL1uOXDbRTZHV9PuNqfPXSijWaVdHuqlaVpBhZRKsn8pYNDyagQqRSfK5VRKDtFsc7-x-WAomG-ZZpJpqiPzLdPo2mmmTqns8BHy7_LfpS-fIHa2</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Hu, Liuping</creator><creator>Chatterjee, Kashinath</creator><creator>Liu, Jiaqi</creator><creator>Ou, Zujun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>New lower bound for Lee discrepancy of asymmetrical factorials</title><author>Hu, Liuping ; Chatterjee, Kashinath ; Liu, Jiaqi ; Ou, Zujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-f1d1ac21f451f85fb39df7f8d363d4d8d9eb6ffe1e4146cef1d54e4d95404abf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymmetry</topic><topic>Design of experiments</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Factorials</topic><topic>Finance</topic><topic>Insurance</topic><topic>Lower bounds</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regular Article</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Liuping</creatorcontrib><creatorcontrib>Chatterjee, Kashinath</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Ou, Zujun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Liuping</au><au>Chatterjee, Kashinath</au><au>Liu, Jiaqi</au><au>Ou, Zujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New lower bound for Lee discrepancy of asymmetrical factorials</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>61</volume><issue>4</issue><spage>1763</spage><epage>1772</epage><pages>1763-1772</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Lee discrepancy has wide applications in design of experiments, which can be used to measure the uniformity of fractional factorials. An improved lower bound of Lee discrepancy for asymmetrical factorials with mixed two-, three- and four-level is presented. The new lower bound is more accurate for a lot of designs than other existing lower bound, which is a useful complement to the lower bounds of Lee discrepancy and can be served as a benchmark to search uniform designs with mixed levels in terms of Lee discrepancy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-018-0998-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2020-08, Vol.61 (4), p.1763-1772 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_2561677873 |
source | Springer journals; Business Source Complete |
subjects | Asymmetry Design of experiments Economic Theory/Quantitative Economics/Mathematical Methods Economics Factorials Finance Insurance Lower bounds Management Mathematics and Statistics Operations Research/Decision Theory Probability Theory and Stochastic Processes Regular Article Statistics Statistics for Business |
title | New lower bound for Lee discrepancy of asymmetrical factorials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20lower%20bound%20for%20Lee%20discrepancy%20of%20asymmetrical%20factorials&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Hu,%20Liuping&rft.date=2020-08-01&rft.volume=61&rft.issue=4&rft.spage=1763&rft.epage=1772&rft.pages=1763-1772&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-018-0998-9&rft_dat=%3Cproquest_cross%3E2030541610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030541610&rft_id=info:pmid/&rfr_iscdi=true |