Spatial Disaggregation of Social Indicators: An Info-Metrics Approach

In this paper we propose a methodology to obtain social indicators at a detailed spatial scale by combining the information contained in census and sample surveys. Similarly to previous proposals, the method proposed here estimates a model at the sample level to later project it to the census scale....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social indicators research 2020-11, Vol.152 (2), p.809-821
Hauptverfasser: Fernandez-Vazquez, Esteban, Diaz Dapena, Alberto, Rubiera-Morollon, Fernando, Viñuela, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 821
container_issue 2
container_start_page 809
container_title Social indicators research
container_volume 152
creator Fernandez-Vazquez, Esteban
Diaz Dapena, Alberto
Rubiera-Morollon, Fernando
Viñuela, Ana
description In this paper we propose a methodology to obtain social indicators at a detailed spatial scale by combining the information contained in census and sample surveys. Similarly to previous proposals, the method proposed here estimates a model at the sample level to later project it to the census scale. The main novelties of the technique presented are that (i) the small-scale mapping produced is perfectly consistent with the aggregates -regional or national- observed in the sample, and (ii) it does not require imposing strong distributional assumptions. The methodology suggested here follows the basics presented on Golan (2018) by adapting a cross-moment constrained Generalized Maximum Entropy (GME) estimator to the spatial disaggregation problem. This procedure is compared with the equivalent methodology of Tarozzi and Deaton (2009) by means of numerical experiments, providing a comparatively better performance. Additionally, the practical implementation of the methodology proposed is illustrated by estimating poverty rates for small areas for the region of Andalusia (Spain).
doi_str_mv 10.1007/s11205-020-02455-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561647682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561647682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-a5deea79c99cca786adce9b383c1efd118db9acb5e3431b1e49c20072e6837513</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIlMIfYIrEbLiz4yRmq0oLlYoYCrPlOE5IVeJgpwP99bgEiY3hdHq696F7hFwj3CJAfhcQGQgKDOKkQtDDCZmgyDkFyfCUTIADpwUHOCcXIWwBQKQinZDFptdDq3fJQxt003jbROi6xNXJxpnjYdVVrdGD8-E-mXUR1o4-28G3JiSzvvdOm_dLclbrXbBXv3tK3paL1_kTXb88ruazNTVcZgPVorJW59JIaYzOi0xXxsqSF9ygrSvEoiqlNqWwPOVYok2lYfE9ZrOC5wL5lNyMvjH2c2_DoLZu77sYqZjIMEvzrGCRxUaW8S4Eb2vV-_ZD-y-FoI51qbEuFetSP3WpQxTxURQiuWus_7P-R_UNjMVthA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561647682</pqid></control><display><type>article</type><title>Spatial Disaggregation of Social Indicators: An Info-Metrics Approach</title><source>SpringerNature Journals</source><source>Sociological Abstracts</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Fernandez-Vazquez, Esteban ; Diaz Dapena, Alberto ; Rubiera-Morollon, Fernando ; Viñuela, Ana</creator><creatorcontrib>Fernandez-Vazquez, Esteban ; Diaz Dapena, Alberto ; Rubiera-Morollon, Fernando ; Viñuela, Ana</creatorcontrib><description>In this paper we propose a methodology to obtain social indicators at a detailed spatial scale by combining the information contained in census and sample surveys. Similarly to previous proposals, the method proposed here estimates a model at the sample level to later project it to the census scale. The main novelties of the technique presented are that (i) the small-scale mapping produced is perfectly consistent with the aggregates -regional or national- observed in the sample, and (ii) it does not require imposing strong distributional assumptions. The methodology suggested here follows the basics presented on Golan (2018) by adapting a cross-moment constrained Generalized Maximum Entropy (GME) estimator to the spatial disaggregation problem. This procedure is compared with the equivalent methodology of Tarozzi and Deaton (2009) by means of numerical experiments, providing a comparatively better performance. Additionally, the practical implementation of the methodology proposed is illustrated by estimating poverty rates for small areas for the region of Andalusia (Spain).</description><identifier>ISSN: 0303-8300</identifier><identifier>EISSN: 1573-0921</identifier><identifier>DOI: 10.1007/s11205-020-02455-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Census ; Census of Population ; Censuses ; Economics ; Entropy ; Family income ; Households ; Human Geography ; Informetrics ; Mapping ; Maximum entropy ; Microeconomics ; Original Research ; Polls &amp; surveys ; Poverty ; Public Health ; Quality of Life Research ; Research methodology ; Scientific Concepts ; Small areas ; Social indicators ; Social Sciences ; Sociology</subject><ispartof>Social indicators research, 2020-11, Vol.152 (2), p.809-821</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-a5deea79c99cca786adce9b383c1efd118db9acb5e3431b1e49c20072e6837513</citedby><cites>FETCH-LOGICAL-c396t-a5deea79c99cca786adce9b383c1efd118db9acb5e3431b1e49c20072e6837513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11205-020-02455-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11205-020-02455-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27344,27924,27925,33774,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fernandez-Vazquez, Esteban</creatorcontrib><creatorcontrib>Diaz Dapena, Alberto</creatorcontrib><creatorcontrib>Rubiera-Morollon, Fernando</creatorcontrib><creatorcontrib>Viñuela, Ana</creatorcontrib><title>Spatial Disaggregation of Social Indicators: An Info-Metrics Approach</title><title>Social indicators research</title><addtitle>Soc Indic Res</addtitle><description>In this paper we propose a methodology to obtain social indicators at a detailed spatial scale by combining the information contained in census and sample surveys. Similarly to previous proposals, the method proposed here estimates a model at the sample level to later project it to the census scale. The main novelties of the technique presented are that (i) the small-scale mapping produced is perfectly consistent with the aggregates -regional or national- observed in the sample, and (ii) it does not require imposing strong distributional assumptions. The methodology suggested here follows the basics presented on Golan (2018) by adapting a cross-moment constrained Generalized Maximum Entropy (GME) estimator to the spatial disaggregation problem. This procedure is compared with the equivalent methodology of Tarozzi and Deaton (2009) by means of numerical experiments, providing a comparatively better performance. Additionally, the practical implementation of the methodology proposed is illustrated by estimating poverty rates for small areas for the region of Andalusia (Spain).</description><subject>Census</subject><subject>Census of Population</subject><subject>Censuses</subject><subject>Economics</subject><subject>Entropy</subject><subject>Family income</subject><subject>Households</subject><subject>Human Geography</subject><subject>Informetrics</subject><subject>Mapping</subject><subject>Maximum entropy</subject><subject>Microeconomics</subject><subject>Original Research</subject><subject>Polls &amp; surveys</subject><subject>Poverty</subject><subject>Public Health</subject><subject>Quality of Life Research</subject><subject>Research methodology</subject><subject>Scientific Concepts</subject><subject>Small areas</subject><subject>Social indicators</subject><subject>Social Sciences</subject><subject>Sociology</subject><issn>0303-8300</issn><issn>1573-0921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UD1PwzAQtRBIlMIfYIrEbLiz4yRmq0oLlYoYCrPlOE5IVeJgpwP99bgEiY3hdHq696F7hFwj3CJAfhcQGQgKDOKkQtDDCZmgyDkFyfCUTIADpwUHOCcXIWwBQKQinZDFptdDq3fJQxt003jbROi6xNXJxpnjYdVVrdGD8-E-mXUR1o4-28G3JiSzvvdOm_dLclbrXbBXv3tK3paL1_kTXb88ruazNTVcZgPVorJW59JIaYzOi0xXxsqSF9ygrSvEoiqlNqWwPOVYok2lYfE9ZrOC5wL5lNyMvjH2c2_DoLZu77sYqZjIMEvzrGCRxUaW8S4Eb2vV-_ZD-y-FoI51qbEuFetSP3WpQxTxURQiuWus_7P-R_UNjMVthA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Fernandez-Vazquez, Esteban</creator><creator>Diaz Dapena, Alberto</creator><creator>Rubiera-Morollon, Fernando</creator><creator>Viñuela, Ana</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88C</scope><scope>88G</scope><scope>88J</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0T</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>M2S</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>20201101</creationdate><title>Spatial Disaggregation of Social Indicators: An Info-Metrics Approach</title><author>Fernandez-Vazquez, Esteban ; Diaz Dapena, Alberto ; Rubiera-Morollon, Fernando ; Viñuela, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-a5deea79c99cca786adce9b383c1efd118db9acb5e3431b1e49c20072e6837513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Census</topic><topic>Census of Population</topic><topic>Censuses</topic><topic>Economics</topic><topic>Entropy</topic><topic>Family income</topic><topic>Households</topic><topic>Human Geography</topic><topic>Informetrics</topic><topic>Mapping</topic><topic>Maximum entropy</topic><topic>Microeconomics</topic><topic>Original Research</topic><topic>Polls &amp; surveys</topic><topic>Poverty</topic><topic>Public Health</topic><topic>Quality of Life Research</topic><topic>Research methodology</topic><topic>Scientific Concepts</topic><topic>Small areas</topic><topic>Social indicators</topic><topic>Social Sciences</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez-Vazquez, Esteban</creatorcontrib><creatorcontrib>Diaz Dapena, Alberto</creatorcontrib><creatorcontrib>Rubiera-Morollon, Fernando</creatorcontrib><creatorcontrib>Viñuela, Ana</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Education Database</collection><collection>Healthcare Administration Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social indicators research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez-Vazquez, Esteban</au><au>Diaz Dapena, Alberto</au><au>Rubiera-Morollon, Fernando</au><au>Viñuela, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Disaggregation of Social Indicators: An Info-Metrics Approach</atitle><jtitle>Social indicators research</jtitle><stitle>Soc Indic Res</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>152</volume><issue>2</issue><spage>809</spage><epage>821</epage><pages>809-821</pages><issn>0303-8300</issn><eissn>1573-0921</eissn><abstract>In this paper we propose a methodology to obtain social indicators at a detailed spatial scale by combining the information contained in census and sample surveys. Similarly to previous proposals, the method proposed here estimates a model at the sample level to later project it to the census scale. The main novelties of the technique presented are that (i) the small-scale mapping produced is perfectly consistent with the aggregates -regional or national- observed in the sample, and (ii) it does not require imposing strong distributional assumptions. The methodology suggested here follows the basics presented on Golan (2018) by adapting a cross-moment constrained Generalized Maximum Entropy (GME) estimator to the spatial disaggregation problem. This procedure is compared with the equivalent methodology of Tarozzi and Deaton (2009) by means of numerical experiments, providing a comparatively better performance. Additionally, the practical implementation of the methodology proposed is illustrated by estimating poverty rates for small areas for the region of Andalusia (Spain).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11205-020-02455-z</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-8300
ispartof Social indicators research, 2020-11, Vol.152 (2), p.809-821
issn 0303-8300
1573-0921
language eng
recordid cdi_proquest_journals_2561647682
source SpringerNature Journals; Sociological Abstracts; JSTOR Archive Collection A-Z Listing
subjects Census
Census of Population
Censuses
Economics
Entropy
Family income
Households
Human Geography
Informetrics
Mapping
Maximum entropy
Microeconomics
Original Research
Polls & surveys
Poverty
Public Health
Quality of Life Research
Research methodology
Scientific Concepts
Small areas
Social indicators
Social Sciences
Sociology
title Spatial Disaggregation of Social Indicators: An Info-Metrics Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Disaggregation%20of%20Social%20Indicators:%20An%20Info-Metrics%20Approach&rft.jtitle=Social%20indicators%20research&rft.au=Fernandez-Vazquez,%20Esteban&rft.date=2020-11-01&rft.volume=152&rft.issue=2&rft.spage=809&rft.epage=821&rft.pages=809-821&rft.issn=0303-8300&rft.eissn=1573-0921&rft_id=info:doi/10.1007/s11205-020-02455-z&rft_dat=%3Cproquest_cross%3E2561647682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561647682&rft_id=info:pmid/&rfr_iscdi=true