Higher-Order Expansion and Bartlett Correctability of Distributionally Robust Optimization

Distributionally robust optimization (DRO) is a worst-case framework for stochastic optimization under uncertainty that has drawn fast-growing studies in recent years. When the underlying probability distribution is unknown and observed from data, DRO suggests to compute the worst-case distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-08
Hauptverfasser: He, Shengyi, Lam, Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distributionally robust optimization (DRO) is a worst-case framework for stochastic optimization under uncertainty that has drawn fast-growing studies in recent years. When the underlying probability distribution is unknown and observed from data, DRO suggests to compute the worst-case distribution within a so-called uncertainty set that captures the involved statistical uncertainty. In particular, DRO with uncertainty set constructed as a statistical divergence neighborhood ball has been shown to provide a tool for constructing valid confidence intervals for nonparametric functionals, and bears a duality with the empirical likelihood (EL). In this paper, we show how adjusting the ball size of such type of DRO can reduce higher-order coverage errors similar to the Bartlett correction. Our correction, which applies to general von Mises differentiable functionals, is more general than the existing EL literature that only focuses on smooth function models or \(M\)-estimation. Moreover, we demonstrate a higher-order "self-normalizing" property of DRO regardless of the choice of divergence. Our approach builds on the development of a higher-order expansion of DRO, which is obtained through an asymptotic analysis on a fixed point equation arising from the Karush-Kuhn-Tucker conditions.
ISSN:2331-8422