Simulation of stress-strain state at the boundaries of a bimetallic composite to determine tear-off resistance

Simulation modeling of the deformation under mechanical action on the sample workpiece of the steel-aluminum bimetallic composite material with a thin aluminum intermediate layer was performed. The stress-strain state along the boundaries of the joint at which the sample workpiece layering occurs wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2020-01, Vol.709 (3), p.33016
Hauptverfasser: Zalazinskii, A G, Kryuchkov, D I, Shveikin, V P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 33016
container_title IOP conference series. Materials Science and Engineering
container_volume 709
creator Zalazinskii, A G
Kryuchkov, D I
Shveikin, V P
description Simulation modeling of the deformation under mechanical action on the sample workpiece of the steel-aluminum bimetallic composite material with a thin aluminum intermediate layer was performed. The stress-strain state along the boundaries of the joint at which the sample workpiece layering occurs was determined. A series of computational experiments with varying the specific work value of the layering under separation conditions was implemented. The level of stresses, leading to the separation of the bimetallic compound, is estimated using the energy criterion. The dependence of the rupture strength along the ring contour on the specific work value of the layering varied in the range of 0.1-0.2 N/mm was calculated. It was established that for the studied variants of the computational experiment, a rigid stress state with the predominance of normal tensile stresses is implemented in place of the beginning of the layering.
doi_str_mv 10.1088/1757-899X/709/3/033016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561571810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561571810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2696-3718005babb13dfa6e75be773a6380e892089e8824d645251b0dd848ac60ce553</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMoOI6-ggTcuKmTNE2aLmUYf2DExSi4C2l7ixnapibpwrc3pTIiCK5uLjnfufAhdEnJDSVSrmjO80QWxdsqJ8WKrQhjhIojtDh8HB_ekp6iM-_3hIg8y8gC9TvTja0OxvbYNtgHB94ncWjTx00HwDrg8A64tGNfa2fAT6DGpekg6LY1Fa5sN1hvIhssriGA60wfF9AusU2Do9NEV1_BOTppdOvh4nsu0evd5mX9kGyf7x_Xt9ukSkUhEpZTSQgvdVlSVjdaQM5LyHOmBZMEZJESWYCUaVaLjKeclqSuZSZ1JUgFnLMlupq9g7MfI_ig9nZ0fTypUi4oj35KIiVmqnLWeweNGpzptPtUlKipWzXVpqYKVexWMTV3G4PpHDR2-DH_G7r-I_S02_zC1FA37AvCnYnJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561571810</pqid></control><display><type>article</type><title>Simulation of stress-strain state at the boundaries of a bimetallic composite to determine tear-off resistance</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Zalazinskii, A G ; Kryuchkov, D I ; Shveikin, V P</creator><creatorcontrib>Zalazinskii, A G ; Kryuchkov, D I ; Shveikin, V P</creatorcontrib><description>Simulation modeling of the deformation under mechanical action on the sample workpiece of the steel-aluminum bimetallic composite material with a thin aluminum intermediate layer was performed. The stress-strain state along the boundaries of the joint at which the sample workpiece layering occurs was determined. A series of computational experiments with varying the specific work value of the layering under separation conditions was implemented. The level of stresses, leading to the separation of the bimetallic compound, is estimated using the energy criterion. The dependence of the rupture strength along the ring contour on the specific work value of the layering varied in the range of 0.1-0.2 N/mm was calculated. It was established that for the studied variants of the computational experiment, a rigid stress state with the predominance of normal tensile stresses is implemented in place of the beginning of the layering.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/709/3/033016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Bimetals ; Boundaries ; Composite materials ; Creep rupture strength ; Layering ; Separation ; Strain ; Stress-strain relationships ; Stresses ; Workpieces</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-01, Vol.709 (3), p.33016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2696-3718005babb13dfa6e75be773a6380e892089e8824d645251b0dd848ac60ce553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/709/3/033016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Zalazinskii, A G</creatorcontrib><creatorcontrib>Kryuchkov, D I</creatorcontrib><creatorcontrib>Shveikin, V P</creatorcontrib><title>Simulation of stress-strain state at the boundaries of a bimetallic composite to determine tear-off resistance</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Simulation modeling of the deformation under mechanical action on the sample workpiece of the steel-aluminum bimetallic composite material with a thin aluminum intermediate layer was performed. The stress-strain state along the boundaries of the joint at which the sample workpiece layering occurs was determined. A series of computational experiments with varying the specific work value of the layering under separation conditions was implemented. The level of stresses, leading to the separation of the bimetallic compound, is estimated using the energy criterion. The dependence of the rupture strength along the ring contour on the specific work value of the layering varied in the range of 0.1-0.2 N/mm was calculated. It was established that for the studied variants of the computational experiment, a rigid stress state with the predominance of normal tensile stresses is implemented in place of the beginning of the layering.</description><subject>Aluminum</subject><subject>Bimetals</subject><subject>Boundaries</subject><subject>Composite materials</subject><subject>Creep rupture strength</subject><subject>Layering</subject><subject>Separation</subject><subject>Strain</subject><subject>Stress-strain relationships</subject><subject>Stresses</subject><subject>Workpieces</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1KxDAURoMoOI6-ggTcuKmTNE2aLmUYf2DExSi4C2l7ixnapibpwrc3pTIiCK5uLjnfufAhdEnJDSVSrmjO80QWxdsqJ8WKrQhjhIojtDh8HB_ekp6iM-_3hIg8y8gC9TvTja0OxvbYNtgHB94ncWjTx00HwDrg8A64tGNfa2fAT6DGpekg6LY1Fa5sN1hvIhssriGA60wfF9AusU2Do9NEV1_BOTppdOvh4nsu0evd5mX9kGyf7x_Xt9ukSkUhEpZTSQgvdVlSVjdaQM5LyHOmBZMEZJESWYCUaVaLjKeclqSuZSZ1JUgFnLMlupq9g7MfI_ig9nZ0fTypUi4oj35KIiVmqnLWeweNGpzptPtUlKipWzXVpqYKVexWMTV3G4PpHDR2-DH_G7r-I_S02_zC1FA37AvCnYnJ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zalazinskii, A G</creator><creator>Kryuchkov, D I</creator><creator>Shveikin, V P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200101</creationdate><title>Simulation of stress-strain state at the boundaries of a bimetallic composite to determine tear-off resistance</title><author>Zalazinskii, A G ; Kryuchkov, D I ; Shveikin, V P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2696-3718005babb13dfa6e75be773a6380e892089e8824d645251b0dd848ac60ce553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Bimetals</topic><topic>Boundaries</topic><topic>Composite materials</topic><topic>Creep rupture strength</topic><topic>Layering</topic><topic>Separation</topic><topic>Strain</topic><topic>Stress-strain relationships</topic><topic>Stresses</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zalazinskii, A G</creatorcontrib><creatorcontrib>Kryuchkov, D I</creatorcontrib><creatorcontrib>Shveikin, V P</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zalazinskii, A G</au><au>Kryuchkov, D I</au><au>Shveikin, V P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of stress-strain state at the boundaries of a bimetallic composite to determine tear-off resistance</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>709</volume><issue>3</issue><spage>33016</spage><pages>33016-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Simulation modeling of the deformation under mechanical action on the sample workpiece of the steel-aluminum bimetallic composite material with a thin aluminum intermediate layer was performed. The stress-strain state along the boundaries of the joint at which the sample workpiece layering occurs was determined. A series of computational experiments with varying the specific work value of the layering under separation conditions was implemented. The level of stresses, leading to the separation of the bimetallic compound, is estimated using the energy criterion. The dependence of the rupture strength along the ring contour on the specific work value of the layering varied in the range of 0.1-0.2 N/mm was calculated. It was established that for the studied variants of the computational experiment, a rigid stress state with the predominance of normal tensile stresses is implemented in place of the beginning of the layering.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/709/3/033016</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2020-01, Vol.709 (3), p.33016
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2561571810
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Aluminum
Bimetals
Boundaries
Composite materials
Creep rupture strength
Layering
Separation
Strain
Stress-strain relationships
Stresses
Workpieces
title Simulation of stress-strain state at the boundaries of a bimetallic composite to determine tear-off resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20stress-strain%20state%20at%20the%20boundaries%20of%20a%20bimetallic%20composite%20to%20determine%20tear-off%20resistance&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Zalazinskii,%20A%20G&rft.date=2020-01-01&rft.volume=709&rft.issue=3&rft.spage=33016&rft.pages=33016-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/709/3/033016&rft_dat=%3Cproquest_cross%3E2561571810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561571810&rft_id=info:pmid/&rfr_iscdi=true