Inverse Problems of Finding the Lowest Coefficient in the Elliptic Equation

The article is devoted to the study of problems of finding the non-negative coefficient q(t) in the elliptic equation utt + a2Δu − q(t)u = f(x, t) (x = (x1, . . . , xn) ∈ Ω ⊂ Rn, t ∈ (0, T), 0 < T < +∞, Δ — operator Laplace on x1, . . . , xn). These problems contain the usual boundary conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Siberian Federal University. Mathematics & Physics 2021-10, Vol.14 (4), p.528-542
Hauptverfasser: Kozhanov, Alexander I., Shipina, Tatyana N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article is devoted to the study of problems of finding the non-negative coefficient q(t) in the elliptic equation utt + a2Δu − q(t)u = f(x, t) (x = (x1, . . . , xn) ∈ Ω ⊂ Rn, t ∈ (0, T), 0 < T < +∞, Δ — operator Laplace on x1, . . . , xn). These problems contain the usual boundary conditions and additional condition ( spatial integral overdetermination condition or boundary integral overdetermination condition). The theorems of existence and uniqueness are proved
ISSN:1997-1397
2313-6022
DOI:10.17516/1997-1397-2021-14-4-528-542