Inverse Problems of Finding the Lowest Coefficient in the Elliptic Equation
The article is devoted to the study of problems of finding the non-negative coefficient q(t) in the elliptic equation utt + a2Δu − q(t)u = f(x, t) (x = (x1, . . . , xn) ∈ Ω ⊂ Rn, t ∈ (0, T), 0 < T < +∞, Δ — operator Laplace on x1, . . . , xn). These problems contain the usual boundary conditio...
Gespeichert in:
Veröffentlicht in: | Journal of Siberian Federal University. Mathematics & Physics 2021-10, Vol.14 (4), p.528-542 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The article is devoted to the study of problems of finding the non-negative coefficient q(t) in the elliptic equation utt + a2Δu − q(t)u = f(x, t) (x = (x1, . . . , xn) ∈ Ω ⊂ Rn, t ∈ (0, T), 0 < T < +∞, Δ — operator Laplace on x1, . . . , xn). These problems contain the usual boundary conditions and additional condition ( spatial integral overdetermination condition or boundary integral overdetermination condition). The theorems of existence and uniqueness are proved |
---|---|
ISSN: | 1997-1397 2313-6022 |
DOI: | 10.17516/1997-1397-2021-14-4-528-542 |