Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test

It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of material forming 2021-09, Vol.14 (5), p.1221-1232
Hauptverfasser: Ma, Yan, Chen, Shuai-feng, Chen, Da-yong, Banabic, Dorel, Song, Hong-wu, Xu, Yong, Zhang, Shi-hong, Fan, Xiao-shuai, Wang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1232
container_issue 5
container_start_page 1221
container_title International journal of material forming
container_volume 14
creator Ma, Yan
Chen, Shuai-feng
Chen, Da-yong
Banabic, Dorel
Song, Hong-wu
Xu, Yong
Zhang, Shi-hong
Fan, Xiao-shuai
Wang, Qiang
description It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone hydraulic FLC of AA5A06 under high strain rate (HSR) condition based on the impact hydroforming technology (IHF). It is found that the FLC is increased significantly by IHF compared with the quasi-static rigid punch (QS-R) forming and the quasi-static hydraulic (QS-H) forming. Differentiating with the QS-H, the increase amounts of FLC at the biaxial tension zone and the tension-compression zone are notably different for IHF. Additionally, the theoretical calculations of FLC is conducted by using M-K model combining with Hill48 anisotropic yield criterion under QS and HSR conditions. The results calculated by the M-K model reasonably agree with the ones obtained from experimentation under QS and HSR condition, and a higher initial thickness ratio is assigned for HSR considering the neck postponing effect of inertia.
doi_str_mv 10.1007/s12289-021-01635-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561506281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561506281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f631ba745a3f4a43d152dccd7bf7c46814aad0b96676e36063ccafb4c117d503</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIVKV_gMkSc8BnO3YzovIpVWKB2XIcu3WVxMVOhvLrSRooG7fc6d37kB5C10BugRB5l4DSZZERChkBwfJMnqEZFIJkggI_P91EXKJFSjsyDKNSUj5Duwfb2dj4Vnc-tDg43G0tdmGENrj2je9G0Dd7bTq8PVQx_D7LA3bRm1FX25Sw6-saf4XWHmm6r705GXU2dVfowuk62cXPnqOPp8f31Uu2fnt-Xd2vM8Og6DLpBINSS55r5rjmrIKcVsZUsnTScLEErnVFykIIKSwTRDBjtCu5AZBVTtgc3Uy--xg--yFY7UIf2yFS0VxATgRdwsCiE8vEkFK0Tu2jb3Q8KCBqrFVNtaqhVnWsVclBxCZRGsjtxsY_639U34HIfGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561506281</pqid></control><display><type>article</type><title>Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ma, Yan ; Chen, Shuai-feng ; Chen, Da-yong ; Banabic, Dorel ; Song, Hong-wu ; Xu, Yong ; Zhang, Shi-hong ; Fan, Xiao-shuai ; Wang, Qiang</creator><creatorcontrib>Ma, Yan ; Chen, Shuai-feng ; Chen, Da-yong ; Banabic, Dorel ; Song, Hong-wu ; Xu, Yong ; Zhang, Shi-hong ; Fan, Xiao-shuai ; Wang, Qiang</creatorcontrib><description>It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone hydraulic FLC of AA5A06 under high strain rate (HSR) condition based on the impact hydroforming technology (IHF). It is found that the FLC is increased significantly by IHF compared with the quasi-static rigid punch (QS-R) forming and the quasi-static hydraulic (QS-H) forming. Differentiating with the QS-H, the increase amounts of FLC at the biaxial tension zone and the tension-compression zone are notably different for IHF. Additionally, the theoretical calculations of FLC is conducted by using M-K model combining with Hill48 anisotropic yield criterion under QS and HSR conditions. The results calculated by the M-K model reasonably agree with the ones obtained from experimentation under QS and HSR condition, and a higher initial thickness ratio is assigned for HSR considering the neck postponing effect of inertia.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-021-01635-7</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Axial stress ; CAE) and Design ; Compression zone ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Engineering ; Experimentation ; Forming limit diagrams ; High strain rate ; Hydraulics ; Hydroforming ; Machines ; Manufacturing ; Materials Science ; Mechanical Engineering ; Notches ; Original Research ; Processes ; Thickness ratio ; Yield criteria</subject><ispartof>International journal of material forming, 2021-09, Vol.14 (5), p.1221-1232</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f631ba745a3f4a43d152dccd7bf7c46814aad0b96676e36063ccafb4c117d503</citedby><cites>FETCH-LOGICAL-c319t-7f631ba745a3f4a43d152dccd7bf7c46814aad0b96676e36063ccafb4c117d503</cites><orcidid>0000-0002-2865-6744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-021-01635-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-021-01635-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ma, Yan</creatorcontrib><creatorcontrib>Chen, Shuai-feng</creatorcontrib><creatorcontrib>Chen, Da-yong</creatorcontrib><creatorcontrib>Banabic, Dorel</creatorcontrib><creatorcontrib>Song, Hong-wu</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Zhang, Shi-hong</creatorcontrib><creatorcontrib>Fan, Xiao-shuai</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><title>Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone hydraulic FLC of AA5A06 under high strain rate (HSR) condition based on the impact hydroforming technology (IHF). It is found that the FLC is increased significantly by IHF compared with the quasi-static rigid punch (QS-R) forming and the quasi-static hydraulic (QS-H) forming. Differentiating with the QS-H, the increase amounts of FLC at the biaxial tension zone and the tension-compression zone are notably different for IHF. Additionally, the theoretical calculations of FLC is conducted by using M-K model combining with Hill48 anisotropic yield criterion under QS and HSR conditions. The results calculated by the M-K model reasonably agree with the ones obtained from experimentation under QS and HSR condition, and a higher initial thickness ratio is assigned for HSR considering the neck postponing effect of inertia.</description><subject>Axial stress</subject><subject>CAE) and Design</subject><subject>Compression zone</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Experimentation</subject><subject>Forming limit diagrams</subject><subject>High strain rate</subject><subject>Hydraulics</subject><subject>Hydroforming</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Notches</subject><subject>Original Research</subject><subject>Processes</subject><subject>Thickness ratio</subject><subject>Yield criteria</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQtRBIVKV_gMkSc8BnO3YzovIpVWKB2XIcu3WVxMVOhvLrSRooG7fc6d37kB5C10BugRB5l4DSZZERChkBwfJMnqEZFIJkggI_P91EXKJFSjsyDKNSUj5Duwfb2dj4Vnc-tDg43G0tdmGENrj2je9G0Dd7bTq8PVQx_D7LA3bRm1FX25Sw6-saf4XWHmm6r705GXU2dVfowuk62cXPnqOPp8f31Uu2fnt-Xd2vM8Og6DLpBINSS55r5rjmrIKcVsZUsnTScLEErnVFykIIKSwTRDBjtCu5AZBVTtgc3Uy--xg--yFY7UIf2yFS0VxATgRdwsCiE8vEkFK0Tu2jb3Q8KCBqrFVNtaqhVnWsVclBxCZRGsjtxsY_639U34HIfGc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ma, Yan</creator><creator>Chen, Shuai-feng</creator><creator>Chen, Da-yong</creator><creator>Banabic, Dorel</creator><creator>Song, Hong-wu</creator><creator>Xu, Yong</creator><creator>Zhang, Shi-hong</creator><creator>Fan, Xiao-shuai</creator><creator>Wang, Qiang</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2865-6744</orcidid></search><sort><creationdate>20210901</creationdate><title>Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test</title><author>Ma, Yan ; Chen, Shuai-feng ; Chen, Da-yong ; Banabic, Dorel ; Song, Hong-wu ; Xu, Yong ; Zhang, Shi-hong ; Fan, Xiao-shuai ; Wang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f631ba745a3f4a43d152dccd7bf7c46814aad0b96676e36063ccafb4c117d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axial stress</topic><topic>CAE) and Design</topic><topic>Compression zone</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Experimentation</topic><topic>Forming limit diagrams</topic><topic>High strain rate</topic><topic>Hydraulics</topic><topic>Hydroforming</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Notches</topic><topic>Original Research</topic><topic>Processes</topic><topic>Thickness ratio</topic><topic>Yield criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yan</creatorcontrib><creatorcontrib>Chen, Shuai-feng</creatorcontrib><creatorcontrib>Chen, Da-yong</creatorcontrib><creatorcontrib>Banabic, Dorel</creatorcontrib><creatorcontrib>Song, Hong-wu</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Zhang, Shi-hong</creatorcontrib><creatorcontrib>Fan, Xiao-shuai</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yan</au><au>Chen, Shuai-feng</au><au>Chen, Da-yong</au><au>Banabic, Dorel</au><au>Song, Hong-wu</au><au>Xu, Yong</au><au>Zhang, Shi-hong</au><au>Fan, Xiao-shuai</au><au>Wang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>1221</spage><epage>1232</epage><pages>1221-1232</pages><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone hydraulic FLC of AA5A06 under high strain rate (HSR) condition based on the impact hydroforming technology (IHF). It is found that the FLC is increased significantly by IHF compared with the quasi-static rigid punch (QS-R) forming and the quasi-static hydraulic (QS-H) forming. Differentiating with the QS-H, the increase amounts of FLC at the biaxial tension zone and the tension-compression zone are notably different for IHF. Additionally, the theoretical calculations of FLC is conducted by using M-K model combining with Hill48 anisotropic yield criterion under QS and HSR conditions. The results calculated by the M-K model reasonably agree with the ones obtained from experimentation under QS and HSR condition, and a higher initial thickness ratio is assigned for HSR considering the neck postponing effect of inertia.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-021-01635-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2865-6744</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1960-6206
ispartof International journal of material forming, 2021-09, Vol.14 (5), p.1221-1232
issn 1960-6206
1960-6214
language eng
recordid cdi_proquest_journals_2561506281
source SpringerLink Journals - AutoHoldings
subjects Axial stress
CAE) and Design
Compression zone
Computational Intelligence
Computer-Aided Engineering (CAD
Engineering
Experimentation
Forming limit diagrams
High strain rate
Hydraulics
Hydroforming
Machines
Manufacturing
Materials Science
Mechanical Engineering
Notches
Original Research
Processes
Thickness ratio
Yield criteria
title Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20forming%20limit%20of%20impact%20hydroforming%20by%20frictionless%20full%20zone%20hydraulic%20forming%20test&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Ma,%20Yan&rft.date=2021-09-01&rft.volume=14&rft.issue=5&rft.spage=1221&rft.epage=1232&rft.pages=1221-1232&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-021-01635-7&rft_dat=%3Cproquest_cross%3E2561506281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561506281&rft_id=info:pmid/&rfr_iscdi=true