Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test
It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone...
Gespeichert in:
Veröffentlicht in: | International journal of material forming 2021-09, Vol.14 (5), p.1221-1232 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | 5 |
container_start_page | 1221 |
container_title | International journal of material forming |
container_volume | 14 |
creator | Ma, Yan Chen, Shuai-feng Chen, Da-yong Banabic, Dorel Song, Hong-wu Xu, Yong Zhang, Shi-hong Fan, Xiao-shuai Wang, Qiang |
description | It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone hydraulic FLC of AA5A06 under high strain rate (HSR) condition based on the impact hydroforming technology (IHF). It is found that the FLC is increased significantly by IHF compared with the quasi-static rigid punch (QS-R) forming and the quasi-static hydraulic (QS-H) forming. Differentiating with the QS-H, the increase amounts of FLC at the biaxial tension zone and the tension-compression zone are notably different for IHF. Additionally, the theoretical calculations of FLC is conducted by using M-K model combining with Hill48 anisotropic yield criterion under QS and HSR conditions. The results calculated by the M-K model reasonably agree with the ones obtained from experimentation under QS and HSR condition, and a higher initial thickness ratio is assigned for HSR considering the neck postponing effect of inertia. |
doi_str_mv | 10.1007/s12289-021-01635-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561506281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561506281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f631ba745a3f4a43d152dccd7bf7c46814aad0b96676e36063ccafb4c117d503</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIVKV_gMkSc8BnO3YzovIpVWKB2XIcu3WVxMVOhvLrSRooG7fc6d37kB5C10BugRB5l4DSZZERChkBwfJMnqEZFIJkggI_P91EXKJFSjsyDKNSUj5Duwfb2dj4Vnc-tDg43G0tdmGENrj2je9G0Dd7bTq8PVQx_D7LA3bRm1FX25Sw6-saf4XWHmm6r705GXU2dVfowuk62cXPnqOPp8f31Uu2fnt-Xd2vM8Og6DLpBINSS55r5rjmrIKcVsZUsnTScLEErnVFykIIKSwTRDBjtCu5AZBVTtgc3Uy--xg--yFY7UIf2yFS0VxATgRdwsCiE8vEkFK0Tu2jb3Q8KCBqrFVNtaqhVnWsVclBxCZRGsjtxsY_639U34HIfGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561506281</pqid></control><display><type>article</type><title>Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ma, Yan ; Chen, Shuai-feng ; Chen, Da-yong ; Banabic, Dorel ; Song, Hong-wu ; Xu, Yong ; Zhang, Shi-hong ; Fan, Xiao-shuai ; Wang, Qiang</creator><creatorcontrib>Ma, Yan ; Chen, Shuai-feng ; Chen, Da-yong ; Banabic, Dorel ; Song, Hong-wu ; Xu, Yong ; Zhang, Shi-hong ; Fan, Xiao-shuai ; Wang, Qiang</creatorcontrib><description>It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone hydraulic FLC of AA5A06 under high strain rate (HSR) condition based on the impact hydroforming technology (IHF). It is found that the FLC is increased significantly by IHF compared with the quasi-static rigid punch (QS-R) forming and the quasi-static hydraulic (QS-H) forming. Differentiating with the QS-H, the increase amounts of FLC at the biaxial tension zone and the tension-compression zone are notably different for IHF. Additionally, the theoretical calculations of FLC is conducted by using M-K model combining with Hill48 anisotropic yield criterion under QS and HSR conditions. The results calculated by the M-K model reasonably agree with the ones obtained from experimentation under QS and HSR condition, and a higher initial thickness ratio is assigned for HSR considering the neck postponing effect of inertia.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-021-01635-7</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Axial stress ; CAE) and Design ; Compression zone ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Engineering ; Experimentation ; Forming limit diagrams ; High strain rate ; Hydraulics ; Hydroforming ; Machines ; Manufacturing ; Materials Science ; Mechanical Engineering ; Notches ; Original Research ; Processes ; Thickness ratio ; Yield criteria</subject><ispartof>International journal of material forming, 2021-09, Vol.14 (5), p.1221-1232</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f631ba745a3f4a43d152dccd7bf7c46814aad0b96676e36063ccafb4c117d503</citedby><cites>FETCH-LOGICAL-c319t-7f631ba745a3f4a43d152dccd7bf7c46814aad0b96676e36063ccafb4c117d503</cites><orcidid>0000-0002-2865-6744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-021-01635-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-021-01635-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ma, Yan</creatorcontrib><creatorcontrib>Chen, Shuai-feng</creatorcontrib><creatorcontrib>Chen, Da-yong</creatorcontrib><creatorcontrib>Banabic, Dorel</creatorcontrib><creatorcontrib>Song, Hong-wu</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Zhang, Shi-hong</creatorcontrib><creatorcontrib>Fan, Xiao-shuai</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><title>Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone hydraulic FLC of AA5A06 under high strain rate (HSR) condition based on the impact hydroforming technology (IHF). It is found that the FLC is increased significantly by IHF compared with the quasi-static rigid punch (QS-R) forming and the quasi-static hydraulic (QS-H) forming. Differentiating with the QS-H, the increase amounts of FLC at the biaxial tension zone and the tension-compression zone are notably different for IHF. Additionally, the theoretical calculations of FLC is conducted by using M-K model combining with Hill48 anisotropic yield criterion under QS and HSR conditions. The results calculated by the M-K model reasonably agree with the ones obtained from experimentation under QS and HSR condition, and a higher initial thickness ratio is assigned for HSR considering the neck postponing effect of inertia.</description><subject>Axial stress</subject><subject>CAE) and Design</subject><subject>Compression zone</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Experimentation</subject><subject>Forming limit diagrams</subject><subject>High strain rate</subject><subject>Hydraulics</subject><subject>Hydroforming</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Notches</subject><subject>Original Research</subject><subject>Processes</subject><subject>Thickness ratio</subject><subject>Yield criteria</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQtRBIVKV_gMkSc8BnO3YzovIpVWKB2XIcu3WVxMVOhvLrSRooG7fc6d37kB5C10BugRB5l4DSZZERChkBwfJMnqEZFIJkggI_P91EXKJFSjsyDKNSUj5Duwfb2dj4Vnc-tDg43G0tdmGENrj2je9G0Dd7bTq8PVQx_D7LA3bRm1FX25Sw6-saf4XWHmm6r705GXU2dVfowuk62cXPnqOPp8f31Uu2fnt-Xd2vM8Og6DLpBINSS55r5rjmrIKcVsZUsnTScLEErnVFykIIKSwTRDBjtCu5AZBVTtgc3Uy--xg--yFY7UIf2yFS0VxATgRdwsCiE8vEkFK0Tu2jb3Q8KCBqrFVNtaqhVnWsVclBxCZRGsjtxsY_639U34HIfGc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ma, Yan</creator><creator>Chen, Shuai-feng</creator><creator>Chen, Da-yong</creator><creator>Banabic, Dorel</creator><creator>Song, Hong-wu</creator><creator>Xu, Yong</creator><creator>Zhang, Shi-hong</creator><creator>Fan, Xiao-shuai</creator><creator>Wang, Qiang</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2865-6744</orcidid></search><sort><creationdate>20210901</creationdate><title>Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test</title><author>Ma, Yan ; Chen, Shuai-feng ; Chen, Da-yong ; Banabic, Dorel ; Song, Hong-wu ; Xu, Yong ; Zhang, Shi-hong ; Fan, Xiao-shuai ; Wang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f631ba745a3f4a43d152dccd7bf7c46814aad0b96676e36063ccafb4c117d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axial stress</topic><topic>CAE) and Design</topic><topic>Compression zone</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Experimentation</topic><topic>Forming limit diagrams</topic><topic>High strain rate</topic><topic>Hydraulics</topic><topic>Hydroforming</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Notches</topic><topic>Original Research</topic><topic>Processes</topic><topic>Thickness ratio</topic><topic>Yield criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yan</creatorcontrib><creatorcontrib>Chen, Shuai-feng</creatorcontrib><creatorcontrib>Chen, Da-yong</creatorcontrib><creatorcontrib>Banabic, Dorel</creatorcontrib><creatorcontrib>Song, Hong-wu</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Zhang, Shi-hong</creatorcontrib><creatorcontrib>Fan, Xiao-shuai</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yan</au><au>Chen, Shuai-feng</au><au>Chen, Da-yong</au><au>Banabic, Dorel</au><au>Song, Hong-wu</au><au>Xu, Yong</au><au>Zhang, Shi-hong</au><au>Fan, Xiao-shuai</au><au>Wang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>1221</spage><epage>1232</epage><pages>1221-1232</pages><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>It is impossible to obtain the forming limit curve (FLC) by full zone hydraulic forming test under quasi-static (QS) condition since the liquid will leak from the notches of the specimen once the pressure increases. In this study, a novel method is proposed to investigate the frictionless full zone hydraulic FLC of AA5A06 under high strain rate (HSR) condition based on the impact hydroforming technology (IHF). It is found that the FLC is increased significantly by IHF compared with the quasi-static rigid punch (QS-R) forming and the quasi-static hydraulic (QS-H) forming. Differentiating with the QS-H, the increase amounts of FLC at the biaxial tension zone and the tension-compression zone are notably different for IHF. Additionally, the theoretical calculations of FLC is conducted by using M-K model combining with Hill48 anisotropic yield criterion under QS and HSR conditions. The results calculated by the M-K model reasonably agree with the ones obtained from experimentation under QS and HSR condition, and a higher initial thickness ratio is assigned for HSR considering the neck postponing effect of inertia.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-021-01635-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2865-6744</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1960-6206 |
ispartof | International journal of material forming, 2021-09, Vol.14 (5), p.1221-1232 |
issn | 1960-6206 1960-6214 |
language | eng |
recordid | cdi_proquest_journals_2561506281 |
source | SpringerLink Journals - AutoHoldings |
subjects | Axial stress CAE) and Design Compression zone Computational Intelligence Computer-Aided Engineering (CAD Engineering Experimentation Forming limit diagrams High strain rate Hydraulics Hydroforming Machines Manufacturing Materials Science Mechanical Engineering Notches Original Research Processes Thickness ratio Yield criteria |
title | Determination of the forming limit of impact hydroforming by frictionless full zone hydraulic forming test |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20forming%20limit%20of%20impact%20hydroforming%20by%20frictionless%20full%20zone%20hydraulic%20forming%20test&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Ma,%20Yan&rft.date=2021-09-01&rft.volume=14&rft.issue=5&rft.spage=1221&rft.epage=1232&rft.pages=1221-1232&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-021-01635-7&rft_dat=%3Cproquest_cross%3E2561506281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561506281&rft_id=info:pmid/&rfr_iscdi=true |