Classification of News on "Radar" Tarakan Online Using K-Nearest Neighbor Method with N-Gram Features
Classification or text categorization is one of the most common themes in analysing complex data. The classification in this research aims to define the class of an object that has not been known to the class. The classification process will be performed in the process of learning and testing agains...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2019-11, Vol.676 (1), p.12008 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12008 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 676 |
creator | Bintari, E D Gunawan Indriani, A |
description | Classification or text categorization is one of the most common themes in analysing complex data. The classification in this research aims to define the class of an object that has not been known to the class. The classification process will be performed in the process of learning and testing against a known class dataset object. As an online news information, Radar Tarakan classifies news to ease readers to find the desired news and to ease the work of the administrators to do the automatic classification. The website of Radar Tarakan daily news (www.radartarakan.co.id) publishes approximately 480 local news everyday. Local news is the news in the surrounding areas of Tarakan in North Borneo. The website contains the classification of eight local news including the dimensions of the area surrounding the town of Tarakan. This research uses 720 news to build the system of news classification automatically. A text classification method used in this research is the K-Nearest Neighbor (KNN) with N-grams. The accuracy of matching classes generated by the K-Nearest Neighbor with N-Gram is 85.65% (out of 180 test data) and that of the sub class is 70.35 %. The classification time is around 2.7 second per news. |
doi_str_mv | 10.1088/1757-899X/676/1/012008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2561450485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561450485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2698-2e6ad26ab9706c0f359257c995fac1da8649062645a043c381391f39458134c3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QcK88aY2aZM0uZSxTXEfoBO8C2dtumVubU06hv_ejMpEELzKC3nOew5PEFwTfEewEBFJWRoKKd8invKIRJjEGIuToHP8OD1mQc6DC-fWGPOUUtwJdH8DzpnCZNCYqkRVgaZ675CPvWfIwfbQHCy8Q4lm5caUGr06Uy7RUzjVYLVrPG6Wq0Vl0UQ3qypHe9Os0DQcWdiioYZm56nL4KyAjdNX3283mA8H8_5DOJ6NHvv34zCLuRRhrDnkMYeFTDHPcJEwGbM0k5IVkJEcBKcS85hTBpgmWSJIIkmRSMp8olnSDW7a2tpWHzt_nFpXO1v6jSpmnFCGqWCe4i2V2co5qwtVW7MF-6kIVgej6iBLHcQpb1QR1Rr1g7ftoKnqn-bJy-AXpuq88Gj8B_pP_xcByoMb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561450485</pqid></control><display><type>article</type><title>Classification of News on "Radar" Tarakan Online Using K-Nearest Neighbor Method with N-Gram Features</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Bintari, E D ; Gunawan ; Indriani, A</creator><creatorcontrib>Bintari, E D ; Gunawan ; Indriani, A</creatorcontrib><description>Classification or text categorization is one of the most common themes in analysing complex data. The classification in this research aims to define the class of an object that has not been known to the class. The classification process will be performed in the process of learning and testing against a known class dataset object. As an online news information, Radar Tarakan classifies news to ease readers to find the desired news and to ease the work of the administrators to do the automatic classification. The website of Radar Tarakan daily news (www.radartarakan.co.id) publishes approximately 480 local news everyday. Local news is the news in the surrounding areas of Tarakan in North Borneo. The website contains the classification of eight local news including the dimensions of the area surrounding the town of Tarakan. This research uses 720 news to build the system of news classification automatically. A text classification method used in this research is the K-Nearest Neighbor (KNN) with N-grams. The accuracy of matching classes generated by the K-Nearest Neighbor with N-Gram is 85.65% (out of 180 test data) and that of the sub class is 70.35 %. The classification time is around 2.7 second per news.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/676/1/012008</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Classification ; News ; Radar ; Websites</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-11, Vol.676 (1), p.12008</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/676/1/012008/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Bintari, E D</creatorcontrib><creatorcontrib>Gunawan</creatorcontrib><creatorcontrib>Indriani, A</creatorcontrib><title>Classification of News on "Radar" Tarakan Online Using K-Nearest Neighbor Method with N-Gram Features</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Classification or text categorization is one of the most common themes in analysing complex data. The classification in this research aims to define the class of an object that has not been known to the class. The classification process will be performed in the process of learning and testing against a known class dataset object. As an online news information, Radar Tarakan classifies news to ease readers to find the desired news and to ease the work of the administrators to do the automatic classification. The website of Radar Tarakan daily news (www.radartarakan.co.id) publishes approximately 480 local news everyday. Local news is the news in the surrounding areas of Tarakan in North Borneo. The website contains the classification of eight local news including the dimensions of the area surrounding the town of Tarakan. This research uses 720 news to build the system of news classification automatically. A text classification method used in this research is the K-Nearest Neighbor (KNN) with N-grams. The accuracy of matching classes generated by the K-Nearest Neighbor with N-Gram is 85.65% (out of 180 test data) and that of the sub class is 70.35 %. The classification time is around 2.7 second per news.</description><subject>Classification</subject><subject>News</subject><subject>Radar</subject><subject>Websites</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QcK88aY2aZM0uZSxTXEfoBO8C2dtumVubU06hv_ejMpEELzKC3nOew5PEFwTfEewEBFJWRoKKd8invKIRJjEGIuToHP8OD1mQc6DC-fWGPOUUtwJdH8DzpnCZNCYqkRVgaZ675CPvWfIwfbQHCy8Q4lm5caUGr06Uy7RUzjVYLVrPG6Wq0Vl0UQ3qypHe9Os0DQcWdiioYZm56nL4KyAjdNX3283mA8H8_5DOJ6NHvv34zCLuRRhrDnkMYeFTDHPcJEwGbM0k5IVkJEcBKcS85hTBpgmWSJIIkmRSMp8olnSDW7a2tpWHzt_nFpXO1v6jSpmnFCGqWCe4i2V2co5qwtVW7MF-6kIVgej6iBLHcQpb1QR1Rr1g7ftoKnqn-bJy-AXpuq88Gj8B_pP_xcByoMb</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Bintari, E D</creator><creator>Gunawan</creator><creator>Indriani, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191101</creationdate><title>Classification of News on "Radar" Tarakan Online Using K-Nearest Neighbor Method with N-Gram Features</title><author>Bintari, E D ; Gunawan ; Indriani, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2698-2e6ad26ab9706c0f359257c995fac1da8649062645a043c381391f39458134c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>News</topic><topic>Radar</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bintari, E D</creatorcontrib><creatorcontrib>Gunawan</creatorcontrib><creatorcontrib>Indriani, A</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bintari, E D</au><au>Gunawan</au><au>Indriani, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of News on "Radar" Tarakan Online Using K-Nearest Neighbor Method with N-Gram Features</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>676</volume><issue>1</issue><spage>12008</spage><pages>12008-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Classification or text categorization is one of the most common themes in analysing complex data. The classification in this research aims to define the class of an object that has not been known to the class. The classification process will be performed in the process of learning and testing against a known class dataset object. As an online news information, Radar Tarakan classifies news to ease readers to find the desired news and to ease the work of the administrators to do the automatic classification. The website of Radar Tarakan daily news (www.radartarakan.co.id) publishes approximately 480 local news everyday. Local news is the news in the surrounding areas of Tarakan in North Borneo. The website contains the classification of eight local news including the dimensions of the area surrounding the town of Tarakan. This research uses 720 news to build the system of news classification automatically. A text classification method used in this research is the K-Nearest Neighbor (KNN) with N-grams. The accuracy of matching classes generated by the K-Nearest Neighbor with N-Gram is 85.65% (out of 180 test data) and that of the sub class is 70.35 %. The classification time is around 2.7 second per news.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/676/1/012008</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2019-11, Vol.676 (1), p.12008 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2561450485 |
source | Institute of Physics IOPscience extra; IOP Publishing; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Classification News Radar Websites |
title | Classification of News on "Radar" Tarakan Online Using K-Nearest Neighbor Method with N-Gram Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20News%20on%20%22Radar%22%20Tarakan%20Online%20Using%20K-Nearest%20Neighbor%20Method%20with%20N-Gram%20Features&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Bintari,%20E%20D&rft.date=2019-11-01&rft.volume=676&rft.issue=1&rft.spage=12008&rft.pages=12008-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/676/1/012008&rft_dat=%3Cproquest_iop_j%3E2561450485%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561450485&rft_id=info:pmid/&rfr_iscdi=true |