Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells
ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nano...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2019-09, Vol.625 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 625 |
creator | Pelicano, C M Yanagi, H |
description | ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nanostructured ZnO films via low-temperature microwave-assisted H2O oxidation is presented. ZnO nanorods developed after 30 min of microwave irradiation. Then the nanorods evolved to nanoparticles in longer irradiation time. Raman scattering spectra of these nanostructures displayed intense E2-mode peaks confirming their high-quality wurtzite crystal structure. All the samples have an average transmittance of ∼ 80%, which demonstrates their potential as ETL for solar cells. Our results highlight the potential of the integration of microwave technology with H2O oxidation as a fast, low temperature and sustainable process of developing ZnO nanomaterials that can be used for flexible ZnO-based electronics. |
doi_str_mv | 10.1088/1757-899X/625/1/012018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2561267586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561267586</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2228-4e1ba6e289252215ae1f15fc826b1ed7bbf6bc2efc22d65cbafd93e78cdf974d3</originalsourceid><addsrcrecordid>eNptkF1LwzAUhosoOKd_QQLeeFObnDVpeilDnTDdhQrehTQfktk1NWmn-OvtnEwEr84L53nPgSdJTgm-IJjzjBS0SHlZPmcMaEYyTAATvpeMdov9XebkMDmKcYkxK_IcjxJzLxsfu9Crrg9Go0_XKOQ_nDbIunoV0Uvw7w1aO4lWTg1Zrk0qY3SxG-gZLL5h2TnfIOsDak3w6_jqOoOir2VAytR1PE4OrKyjOfmZ4-Tp-upxOkvni5vb6eU8dQDA09yQSjIDvAQKQKg0xBJqFQdWEaOLqrKsUmCsAtCMqkpaXU5MwZW2ZZHryTg5295tg3_rTezE0vehGV4KoIwAKyhnA3W-pZxvf4G7hysxCBREbAWKVtsBhX9QgsXGvNhIFRvBf4qTL3QyeA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561267586</pqid></control><display><type>article</type><title>Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Pelicano, C M ; Yanagi, H</creator><creatorcontrib>Pelicano, C M ; Yanagi, H</creatorcontrib><description>ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nanostructured ZnO films via low-temperature microwave-assisted H2O oxidation is presented. ZnO nanorods developed after 30 min of microwave irradiation. Then the nanorods evolved to nanoparticles in longer irradiation time. Raman scattering spectra of these nanostructures displayed intense E2-mode peaks confirming their high-quality wurtzite crystal structure. All the samples have an average transmittance of ∼ 80%, which demonstrates their potential as ETL for solar cells. Our results highlight the potential of the integration of microwave technology with H2O oxidation as a fast, low temperature and sustainable process of developing ZnO nanomaterials that can be used for flexible ZnO-based electronics.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/625/1/012018</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Crystal structure ; Electron transport ; Irradiation ; Low temperature ; Metal oxides ; Nanomaterials ; Nanoparticles ; Nanorods ; Nanostructure ; Oxidation ; Oxide coatings ; Perovskites ; Photovoltaic cells ; Raman spectra ; Solar cells ; Wurtzite ; Zinc oxide ; Zinc oxides</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-09, Vol.625 (1)</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/625/1/012018/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Pelicano, C M</creatorcontrib><creatorcontrib>Yanagi, H</creatorcontrib><title>Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nanostructured ZnO films via low-temperature microwave-assisted H2O oxidation is presented. ZnO nanorods developed after 30 min of microwave irradiation. Then the nanorods evolved to nanoparticles in longer irradiation time. Raman scattering spectra of these nanostructures displayed intense E2-mode peaks confirming their high-quality wurtzite crystal structure. All the samples have an average transmittance of ∼ 80%, which demonstrates their potential as ETL for solar cells. Our results highlight the potential of the integration of microwave technology with H2O oxidation as a fast, low temperature and sustainable process of developing ZnO nanomaterials that can be used for flexible ZnO-based electronics.</description><subject>Crystal structure</subject><subject>Electron transport</subject><subject>Irradiation</subject><subject>Low temperature</subject><subject>Metal oxides</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Oxidation</subject><subject>Oxide coatings</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Raman spectra</subject><subject>Solar cells</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNptkF1LwzAUhosoOKd_QQLeeFObnDVpeilDnTDdhQrehTQfktk1NWmn-OvtnEwEr84L53nPgSdJTgm-IJjzjBS0SHlZPmcMaEYyTAATvpeMdov9XebkMDmKcYkxK_IcjxJzLxsfu9Crrg9Go0_XKOQ_nDbIunoV0Uvw7w1aO4lWTg1Zrk0qY3SxG-gZLL5h2TnfIOsDak3w6_jqOoOir2VAytR1PE4OrKyjOfmZ4-Tp-upxOkvni5vb6eU8dQDA09yQSjIDvAQKQKg0xBJqFQdWEaOLqrKsUmCsAtCMqkpaXU5MwZW2ZZHryTg5295tg3_rTezE0vehGV4KoIwAKyhnA3W-pZxvf4G7hysxCBREbAWKVtsBhX9QgsXGvNhIFRvBf4qTL3QyeA0</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Pelicano, C M</creator><creator>Yanagi, H</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190901</creationdate><title>Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells</title><author>Pelicano, C M ; Yanagi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2228-4e1ba6e289252215ae1f15fc826b1ed7bbf6bc2efc22d65cbafd93e78cdf974d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystal structure</topic><topic>Electron transport</topic><topic>Irradiation</topic><topic>Low temperature</topic><topic>Metal oxides</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Oxidation</topic><topic>Oxide coatings</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Raman spectra</topic><topic>Solar cells</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelicano, C M</creatorcontrib><creatorcontrib>Yanagi, H</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelicano, C M</au><au>Yanagi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>625</volume><issue>1</issue><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nanostructured ZnO films via low-temperature microwave-assisted H2O oxidation is presented. ZnO nanorods developed after 30 min of microwave irradiation. Then the nanorods evolved to nanoparticles in longer irradiation time. Raman scattering spectra of these nanostructures displayed intense E2-mode peaks confirming their high-quality wurtzite crystal structure. All the samples have an average transmittance of ∼ 80%, which demonstrates their potential as ETL for solar cells. Our results highlight the potential of the integration of microwave technology with H2O oxidation as a fast, low temperature and sustainable process of developing ZnO nanomaterials that can be used for flexible ZnO-based electronics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/625/1/012018</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2019-09, Vol.625 (1) |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2561267586 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Crystal structure Electron transport Irradiation Low temperature Metal oxides Nanomaterials Nanoparticles Nanorods Nanostructure Oxidation Oxide coatings Perovskites Photovoltaic cells Raman spectra Solar cells Wurtzite Zinc oxide Zinc oxides |
title | Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20zinc%20oxide%20films%20grown%20via%20microwave-assisted%20H2O%20oxidation%20for%20perovskite%20solar%20cells&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Pelicano,%20C%20M&rft.date=2019-09-01&rft.volume=625&rft.issue=1&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/625/1/012018&rft_dat=%3Cproquest_iop_j%3E2561267586%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561267586&rft_id=info:pmid/&rfr_iscdi=true |