Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells

ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2019-09, Vol.625 (1)
Hauptverfasser: Pelicano, C M, Yanagi, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title IOP conference series. Materials Science and Engineering
container_volume 625
creator Pelicano, C M
Yanagi, H
description ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nanostructured ZnO films via low-temperature microwave-assisted H2O oxidation is presented. ZnO nanorods developed after 30 min of microwave irradiation. Then the nanorods evolved to nanoparticles in longer irradiation time. Raman scattering spectra of these nanostructures displayed intense E2-mode peaks confirming their high-quality wurtzite crystal structure. All the samples have an average transmittance of ∼ 80%, which demonstrates their potential as ETL for solar cells. Our results highlight the potential of the integration of microwave technology with H2O oxidation as a fast, low temperature and sustainable process of developing ZnO nanomaterials that can be used for flexible ZnO-based electronics.
doi_str_mv 10.1088/1757-899X/625/1/012018
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2561267586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561267586</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2228-4e1ba6e289252215ae1f15fc826b1ed7bbf6bc2efc22d65cbafd93e78cdf974d3</originalsourceid><addsrcrecordid>eNptkF1LwzAUhosoOKd_QQLeeFObnDVpeilDnTDdhQrehTQfktk1NWmn-OvtnEwEr84L53nPgSdJTgm-IJjzjBS0SHlZPmcMaEYyTAATvpeMdov9XebkMDmKcYkxK_IcjxJzLxsfu9Crrg9Go0_XKOQ_nDbIunoV0Uvw7w1aO4lWTg1Zrk0qY3SxG-gZLL5h2TnfIOsDak3w6_jqOoOir2VAytR1PE4OrKyjOfmZ4-Tp-upxOkvni5vb6eU8dQDA09yQSjIDvAQKQKg0xBJqFQdWEaOLqrKsUmCsAtCMqkpaXU5MwZW2ZZHryTg5295tg3_rTezE0vehGV4KoIwAKyhnA3W-pZxvf4G7hysxCBREbAWKVtsBhX9QgsXGvNhIFRvBf4qTL3QyeA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561267586</pqid></control><display><type>article</type><title>Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Pelicano, C M ; Yanagi, H</creator><creatorcontrib>Pelicano, C M ; Yanagi, H</creatorcontrib><description>ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nanostructured ZnO films via low-temperature microwave-assisted H2O oxidation is presented. ZnO nanorods developed after 30 min of microwave irradiation. Then the nanorods evolved to nanoparticles in longer irradiation time. Raman scattering spectra of these nanostructures displayed intense E2-mode peaks confirming their high-quality wurtzite crystal structure. All the samples have an average transmittance of ∼ 80%, which demonstrates their potential as ETL for solar cells. Our results highlight the potential of the integration of microwave technology with H2O oxidation as a fast, low temperature and sustainable process of developing ZnO nanomaterials that can be used for flexible ZnO-based electronics.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/625/1/012018</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Crystal structure ; Electron transport ; Irradiation ; Low temperature ; Metal oxides ; Nanomaterials ; Nanoparticles ; Nanorods ; Nanostructure ; Oxidation ; Oxide coatings ; Perovskites ; Photovoltaic cells ; Raman spectra ; Solar cells ; Wurtzite ; Zinc oxide ; Zinc oxides</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-09, Vol.625 (1)</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/625/1/012018/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Pelicano, C M</creatorcontrib><creatorcontrib>Yanagi, H</creatorcontrib><title>Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nanostructured ZnO films via low-temperature microwave-assisted H2O oxidation is presented. ZnO nanorods developed after 30 min of microwave irradiation. Then the nanorods evolved to nanoparticles in longer irradiation time. Raman scattering spectra of these nanostructures displayed intense E2-mode peaks confirming their high-quality wurtzite crystal structure. All the samples have an average transmittance of ∼ 80%, which demonstrates their potential as ETL for solar cells. Our results highlight the potential of the integration of microwave technology with H2O oxidation as a fast, low temperature and sustainable process of developing ZnO nanomaterials that can be used for flexible ZnO-based electronics.</description><subject>Crystal structure</subject><subject>Electron transport</subject><subject>Irradiation</subject><subject>Low temperature</subject><subject>Metal oxides</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Oxidation</subject><subject>Oxide coatings</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Raman spectra</subject><subject>Solar cells</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNptkF1LwzAUhosoOKd_QQLeeFObnDVpeilDnTDdhQrehTQfktk1NWmn-OvtnEwEr84L53nPgSdJTgm-IJjzjBS0SHlZPmcMaEYyTAATvpeMdov9XebkMDmKcYkxK_IcjxJzLxsfu9Crrg9Go0_XKOQ_nDbIunoV0Uvw7w1aO4lWTg1Zrk0qY3SxG-gZLL5h2TnfIOsDak3w6_jqOoOir2VAytR1PE4OrKyjOfmZ4-Tp-upxOkvni5vb6eU8dQDA09yQSjIDvAQKQKg0xBJqFQdWEaOLqrKsUmCsAtCMqkpaXU5MwZW2ZZHryTg5295tg3_rTezE0vehGV4KoIwAKyhnA3W-pZxvf4G7hysxCBREbAWKVtsBhX9QgsXGvNhIFRvBf4qTL3QyeA0</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Pelicano, C M</creator><creator>Yanagi, H</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190901</creationdate><title>Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells</title><author>Pelicano, C M ; Yanagi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2228-4e1ba6e289252215ae1f15fc826b1ed7bbf6bc2efc22d65cbafd93e78cdf974d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystal structure</topic><topic>Electron transport</topic><topic>Irradiation</topic><topic>Low temperature</topic><topic>Metal oxides</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Oxidation</topic><topic>Oxide coatings</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Raman spectra</topic><topic>Solar cells</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelicano, C M</creatorcontrib><creatorcontrib>Yanagi, H</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelicano, C M</au><au>Yanagi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>625</volume><issue>1</issue><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>ZnO is well-known to be one of the most significant metal oxides that can be used as an electron-transporting layer (ETL) in solar cells. Hence, developing efficient and low temperature protocols have been the spotlight of numerous studies to form nanostructured ZnO films. Herein, the growth of nanostructured ZnO films via low-temperature microwave-assisted H2O oxidation is presented. ZnO nanorods developed after 30 min of microwave irradiation. Then the nanorods evolved to nanoparticles in longer irradiation time. Raman scattering spectra of these nanostructures displayed intense E2-mode peaks confirming their high-quality wurtzite crystal structure. All the samples have an average transmittance of ∼ 80%, which demonstrates their potential as ETL for solar cells. Our results highlight the potential of the integration of microwave technology with H2O oxidation as a fast, low temperature and sustainable process of developing ZnO nanomaterials that can be used for flexible ZnO-based electronics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/625/1/012018</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2019-09, Vol.625 (1)
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2561267586
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Crystal structure
Electron transport
Irradiation
Low temperature
Metal oxides
Nanomaterials
Nanoparticles
Nanorods
Nanostructure
Oxidation
Oxide coatings
Perovskites
Photovoltaic cells
Raman spectra
Solar cells
Wurtzite
Zinc oxide
Zinc oxides
title Nanostructured zinc oxide films grown via microwave-assisted H2O oxidation for perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20zinc%20oxide%20films%20grown%20via%20microwave-assisted%20H2O%20oxidation%20for%20perovskite%20solar%20cells&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Pelicano,%20C%20M&rft.date=2019-09-01&rft.volume=625&rft.issue=1&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/625/1/012018&rft_dat=%3Cproquest_iop_j%3E2561267586%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561267586&rft_id=info:pmid/&rfr_iscdi=true