An Inproved Up-scaling Algorithm Combined TSA and PSF

Taking the Guanzhong Plain of Shanxi Province as the research area, the combine method of trend surface analysis method (TSA) and point spread function (PSF) (TSA+PSF) were used to up-scale the vegetation temperature condition index (VTCI) retrieved from Landsat 8 images (Landsat-VTCI) from a finer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2019-07, Vol.569 (5), p.52003
Hauptverfasser: Bai, Xuejiao, Sang, Lingzhi, Bai, Guichen, Kang, Hongxia, Liu, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 52003
container_title IOP conference series. Materials Science and Engineering
container_volume 569
creator Bai, Xuejiao
Sang, Lingzhi
Bai, Guichen
Kang, Hongxia
Liu, Zhen
description Taking the Guanzhong Plain of Shanxi Province as the research area, the combine method of trend surface analysis method (TSA) and point spread function (PSF) (TSA+PSF) were used to up-scale the vegetation temperature condition index (VTCI) retrieved from Landsat 8 images (Landsat-VTCI) from a finer resolution to a coarser resolution. The up-scaled results were compared with VTCI images retrieved from Aqua MODIS (MODIS-VTCI) to provide technical support for the comprehensive application of drought monitoring results on two spatial scales. Meanwhile, a range of indicators, such as the semivariogram function (SVF), the structural similarity (SSIM), the correlation coefficients (r), root mean square errors (RMSE) were used to systematically compared the up-scaled methods. The results show that TSA+PSF performed better than TSA in terms of SSIM, the correlation and RMSE, the up-scaling model TSA+PSF has the higher accuracy, and it is more effective and robust than TSA. The model that uses PSF to analyze trend surface constructed by TSA is an improvement for up-scaling Landsat- VTCI images from a finer resolutions to a coarser resolutions.
doi_str_mv 10.1088/1757-899X/569/5/052003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561126276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561126276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3083-c93ce42f1a872ff60a43c400a8d21aa4e00387d1bc640f57dcb6df156f6ce40b3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFa_ggS8eImZ3ey_HENptVBRaAvels1utqa0Sdy0Bb-9WyIVQfA0A_N7b2YeQrcYHjBImWDBRCyz7C1hPEtYAowApGdocBqcn3qJL9FV160BuKAUBojldTStW98cShst27gzelPVqyjfrBpf7d630ajZFlUdpot5HunaRq_zyTW6cHrTlTffdYiWk_Fi9BTPXh6no3wWmxRkGpssNSUlDmspiHMcNE0NBdDSEqw1LcOdUlhcGE7BMWFNwa3DjDsedFCkQ3TX-4YDP_Zlt1PrZu_rsFIRxjEmnAgeKN5Txjdd50unWl9ttf9UGNQxInX8Xh2TUCEixVQfURDe98KqaX-cn-fjX5hqrQso-QP9x_8L-MhziA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561126276</pqid></control><display><type>article</type><title>An Inproved Up-scaling Algorithm Combined TSA and PSF</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Bai, Xuejiao ; Sang, Lingzhi ; Bai, Guichen ; Kang, Hongxia ; Liu, Zhen</creator><creatorcontrib>Bai, Xuejiao ; Sang, Lingzhi ; Bai, Guichen ; Kang, Hongxia ; Liu, Zhen</creatorcontrib><description>Taking the Guanzhong Plain of Shanxi Province as the research area, the combine method of trend surface analysis method (TSA) and point spread function (PSF) (TSA+PSF) were used to up-scale the vegetation temperature condition index (VTCI) retrieved from Landsat 8 images (Landsat-VTCI) from a finer resolution to a coarser resolution. The up-scaled results were compared with VTCI images retrieved from Aqua MODIS (MODIS-VTCI) to provide technical support for the comprehensive application of drought monitoring results on two spatial scales. Meanwhile, a range of indicators, such as the semivariogram function (SVF), the structural similarity (SSIM), the correlation coefficients (r), root mean square errors (RMSE) were used to systematically compared the up-scaled methods. The results show that TSA+PSF performed better than TSA in terms of SSIM, the correlation and RMSE, the up-scaling model TSA+PSF has the higher accuracy, and it is more effective and robust than TSA. The model that uses PSF to analyze trend surface constructed by TSA is an improvement for up-scaling Landsat- VTCI images from a finer resolutions to a coarser resolutions.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/569/5/052003</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Correlation coefficients ; Environmental monitoring ; Landsat satellites ; MODIS ; Point spread functions ; Satellite imagery ; Scaling ; Surface analysis (chemical) ; Technical services</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-07, Vol.569 (5), p.52003</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3083-c93ce42f1a872ff60a43c400a8d21aa4e00387d1bc640f57dcb6df156f6ce40b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/569/5/052003/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,782,786,27931,27932,38875,38897,53847,53874</link.rule.ids></links><search><creatorcontrib>Bai, Xuejiao</creatorcontrib><creatorcontrib>Sang, Lingzhi</creatorcontrib><creatorcontrib>Bai, Guichen</creatorcontrib><creatorcontrib>Kang, Hongxia</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><title>An Inproved Up-scaling Algorithm Combined TSA and PSF</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Taking the Guanzhong Plain of Shanxi Province as the research area, the combine method of trend surface analysis method (TSA) and point spread function (PSF) (TSA+PSF) were used to up-scale the vegetation temperature condition index (VTCI) retrieved from Landsat 8 images (Landsat-VTCI) from a finer resolution to a coarser resolution. The up-scaled results were compared with VTCI images retrieved from Aqua MODIS (MODIS-VTCI) to provide technical support for the comprehensive application of drought monitoring results on two spatial scales. Meanwhile, a range of indicators, such as the semivariogram function (SVF), the structural similarity (SSIM), the correlation coefficients (r), root mean square errors (RMSE) were used to systematically compared the up-scaled methods. The results show that TSA+PSF performed better than TSA in terms of SSIM, the correlation and RMSE, the up-scaling model TSA+PSF has the higher accuracy, and it is more effective and robust than TSA. The model that uses PSF to analyze trend surface constructed by TSA is an improvement for up-scaling Landsat- VTCI images from a finer resolutions to a coarser resolutions.</description><subject>Algorithms</subject><subject>Correlation coefficients</subject><subject>Environmental monitoring</subject><subject>Landsat satellites</subject><subject>MODIS</subject><subject>Point spread functions</subject><subject>Satellite imagery</subject><subject>Scaling</subject><subject>Surface analysis (chemical)</subject><subject>Technical services</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9Lw0AQxRdRsFa_ggS8eImZ3ey_HENptVBRaAvels1utqa0Sdy0Bb-9WyIVQfA0A_N7b2YeQrcYHjBImWDBRCyz7C1hPEtYAowApGdocBqcn3qJL9FV160BuKAUBojldTStW98cShst27gzelPVqyjfrBpf7d630ajZFlUdpot5HunaRq_zyTW6cHrTlTffdYiWk_Fi9BTPXh6no3wWmxRkGpssNSUlDmspiHMcNE0NBdDSEqw1LcOdUlhcGE7BMWFNwa3DjDsedFCkQ3TX-4YDP_Zlt1PrZu_rsFIRxjEmnAgeKN5Txjdd50unWl9ttf9UGNQxInX8Xh2TUCEixVQfURDe98KqaX-cn-fjX5hqrQso-QP9x_8L-MhziA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bai, Xuejiao</creator><creator>Sang, Lingzhi</creator><creator>Bai, Guichen</creator><creator>Kang, Hongxia</creator><creator>Liu, Zhen</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190701</creationdate><title>An Inproved Up-scaling Algorithm Combined TSA and PSF</title><author>Bai, Xuejiao ; Sang, Lingzhi ; Bai, Guichen ; Kang, Hongxia ; Liu, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3083-c93ce42f1a872ff60a43c400a8d21aa4e00387d1bc640f57dcb6df156f6ce40b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Correlation coefficients</topic><topic>Environmental monitoring</topic><topic>Landsat satellites</topic><topic>MODIS</topic><topic>Point spread functions</topic><topic>Satellite imagery</topic><topic>Scaling</topic><topic>Surface analysis (chemical)</topic><topic>Technical services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Xuejiao</creatorcontrib><creatorcontrib>Sang, Lingzhi</creatorcontrib><creatorcontrib>Bai, Guichen</creatorcontrib><creatorcontrib>Kang, Hongxia</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Xuejiao</au><au>Sang, Lingzhi</au><au>Bai, Guichen</au><au>Kang, Hongxia</au><au>Liu, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inproved Up-scaling Algorithm Combined TSA and PSF</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>569</volume><issue>5</issue><spage>52003</spage><pages>52003-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Taking the Guanzhong Plain of Shanxi Province as the research area, the combine method of trend surface analysis method (TSA) and point spread function (PSF) (TSA+PSF) were used to up-scale the vegetation temperature condition index (VTCI) retrieved from Landsat 8 images (Landsat-VTCI) from a finer resolution to a coarser resolution. The up-scaled results were compared with VTCI images retrieved from Aqua MODIS (MODIS-VTCI) to provide technical support for the comprehensive application of drought monitoring results on two spatial scales. Meanwhile, a range of indicators, such as the semivariogram function (SVF), the structural similarity (SSIM), the correlation coefficients (r), root mean square errors (RMSE) were used to systematically compared the up-scaled methods. The results show that TSA+PSF performed better than TSA in terms of SSIM, the correlation and RMSE, the up-scaling model TSA+PSF has the higher accuracy, and it is more effective and robust than TSA. The model that uses PSF to analyze trend surface constructed by TSA is an improvement for up-scaling Landsat- VTCI images from a finer resolutions to a coarser resolutions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/569/5/052003</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2019-07, Vol.569 (5), p.52003
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2561126276
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Algorithms
Correlation coefficients
Environmental monitoring
Landsat satellites
MODIS
Point spread functions
Satellite imagery
Scaling
Surface analysis (chemical)
Technical services
title An Inproved Up-scaling Algorithm Combined TSA and PSF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inproved%20Up-scaling%20Algorithm%20Combined%20TSA%20and%20PSF&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Bai,%20Xuejiao&rft.date=2019-07-01&rft.volume=569&rft.issue=5&rft.spage=52003&rft.pages=52003-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/569/5/052003&rft_dat=%3Cproquest_cross%3E2561126276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561126276&rft_id=info:pmid/&rfr_iscdi=true