Diesel fuel particulate emission control using low-cost catalytic materials

[Display omitted] •Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2021-10, Vol.302, p.121157, Article 121157
Hauptverfasser: Khobragade, Rohini, Saravanan, Govindachetty, Einaga, Hisahiro, Nagashima, Hideo, Shukla, Pravesh, Gupta, Tarun, Kumar Agarwal, Avinash, Labhasetwar, Nitin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121157
container_title Fuel (Guildford)
container_volume 302
creator Khobragade, Rohini
Saravanan, Govindachetty
Einaga, Hisahiro
Nagashima, Hideo
Shukla, Pravesh
Gupta, Tarun
Kumar Agarwal, Avinash
Labhasetwar, Nitin
description [Display omitted] •Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite improves not only its durability but also inhibits agglomeration of catalyst particles. Diesel fuel and engine is still projected as a relatively efficient and cleaner in terms of GHG emissions per unit energy generation provided PM emissions are controlled. The catalyst based after-exhaust treatment technologies are very efficient but expensive. Diesel PM oxidation catalysts with matching performance at a lower cost compared to the commercial precious metal catalysts are therefore much required as alternative, due to the vulnerabilities associated with the precious metals in terms of their limited reserves and limited geographical mineral distribution. Low-cost non-precious metal based manganese (Mn)-substituted strontium ferrite (SrFe0.9Mn0.1O3-δ) (SFM) catalysts have been systematically explored, which exhibit improved diesel particulate matter (DPM) catalytic oxidation performance. The available oxygen content in SFM is significantly higher compared to that of pure perovskite phase of strontium ferrite (SrFeO3-δ) (SFO) due to the Mn-substitution. The onset temperature (To) and maximum conversion temperature (Tm) of SFM for PM oxidation was observed at 270 and 380 °C, respectively, which is significantly lower than that of SFO (To = 295 °C; Tm = 440 °C). SFM showed multi-cycle, stable diesel PM oxidation performance compared to that of SFO and manganese oxide dispersed SFO. The durability of SFO is improved substantially upon substitution of Mn in its lattice and this catalyst possess potential for practical applications of diesel PM emission reduction.
doi_str_mv 10.1016/j.fuel.2021.121157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561106309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001623612101036X</els_id><sourcerecordid>2561106309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d485be109fe7fc1d1f3a16563398e6fbd2859c10f8b9a508b16f6c560869c8d73</originalsourceid><addsrcrecordid>eNp9kEtPxCAYRYnRxHH0D7gicd3KVwZKEzdmfMZJ3OiaUAqGplNGoBr_vTR17epuzvkeF6FLICUQ4Nd9aSczlBWpoIQKgNVHaAWipkUNjB6jFclUUVEOp-gsxp4QUgu2WaGXO2eiGfCs44MKyelpUMlgs3cxOj9i7ccU_ICn6MYPPPjvQvuYsFZJDT8Zx_uMB6eGeI5ObA5z8Zdr9P5w_7Z9Knavj8_b212haSVS0W0Eaw2QxpraaujAUgWccUobYbhtu0qwRgOxom0UI6IFbrlmnAjeaNHVdI2ulrmH4D8nE5Ps_RTGvFJWjAMQTkmTqWqhdPAxBmPlIbi9Cj8SiJxLk72cv5ZzaXIpLUs3i2Ty_V_OBBm1M6M2nQtGJ9l595_-C-HTdZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561106309</pqid></control><display><type>article</type><title>Diesel fuel particulate emission control using low-cost catalytic materials</title><source>Elsevier ScienceDirect Journals</source><creator>Khobragade, Rohini ; Saravanan, Govindachetty ; Einaga, Hisahiro ; Nagashima, Hideo ; Shukla, Pravesh ; Gupta, Tarun ; Kumar Agarwal, Avinash ; Labhasetwar, Nitin</creator><creatorcontrib>Khobragade, Rohini ; Saravanan, Govindachetty ; Einaga, Hisahiro ; Nagashima, Hideo ; Shukla, Pravesh ; Gupta, Tarun ; Kumar Agarwal, Avinash ; Labhasetwar, Nitin</creatorcontrib><description>[Display omitted] •Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite improves not only its durability but also inhibits agglomeration of catalyst particles. Diesel fuel and engine is still projected as a relatively efficient and cleaner in terms of GHG emissions per unit energy generation provided PM emissions are controlled. The catalyst based after-exhaust treatment technologies are very efficient but expensive. Diesel PM oxidation catalysts with matching performance at a lower cost compared to the commercial precious metal catalysts are therefore much required as alternative, due to the vulnerabilities associated with the precious metals in terms of their limited reserves and limited geographical mineral distribution. Low-cost non-precious metal based manganese (Mn)-substituted strontium ferrite (SrFe0.9Mn0.1O3-δ) (SFM) catalysts have been systematically explored, which exhibit improved diesel particulate matter (DPM) catalytic oxidation performance. The available oxygen content in SFM is significantly higher compared to that of pure perovskite phase of strontium ferrite (SrFeO3-δ) (SFO) due to the Mn-substitution. The onset temperature (To) and maximum conversion temperature (Tm) of SFM for PM oxidation was observed at 270 and 380 °C, respectively, which is significantly lower than that of SFO (To = 295 °C; Tm = 440 °C). SFM showed multi-cycle, stable diesel PM oxidation performance compared to that of SFO and manganese oxide dispersed SFO. The durability of SFO is improved substantially upon substitution of Mn in its lattice and this catalyst possess potential for practical applications of diesel PM emission reduction.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.121157</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Catalysts ; Catalytic oxidation ; Diesel ; Diesel engines ; Diesel fuel ; Diesel fuels ; Durability ; Emission control ; Emissions control ; Ferrites ; Geographical distribution ; Greenhouse gases ; Heavy metals ; Low cost ; Manganese ; Manganese oxides ; Noble metals ; Oxidation ; Oxygen content ; Particulate emissions ; Particulate matter ; Perovskite ; Perovskites ; PM emissions ; Strontium ; Substitutes</subject><ispartof>Fuel (Guildford), 2021-10, Vol.302, p.121157, Article 121157</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d485be109fe7fc1d1f3a16563398e6fbd2859c10f8b9a508b16f6c560869c8d73</citedby><cites>FETCH-LOGICAL-c328t-d485be109fe7fc1d1f3a16563398e6fbd2859c10f8b9a508b16f6c560869c8d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001623612101036X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Khobragade, Rohini</creatorcontrib><creatorcontrib>Saravanan, Govindachetty</creatorcontrib><creatorcontrib>Einaga, Hisahiro</creatorcontrib><creatorcontrib>Nagashima, Hideo</creatorcontrib><creatorcontrib>Shukla, Pravesh</creatorcontrib><creatorcontrib>Gupta, Tarun</creatorcontrib><creatorcontrib>Kumar Agarwal, Avinash</creatorcontrib><creatorcontrib>Labhasetwar, Nitin</creatorcontrib><title>Diesel fuel particulate emission control using low-cost catalytic materials</title><title>Fuel (Guildford)</title><description>[Display omitted] •Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite improves not only its durability but also inhibits agglomeration of catalyst particles. Diesel fuel and engine is still projected as a relatively efficient and cleaner in terms of GHG emissions per unit energy generation provided PM emissions are controlled. The catalyst based after-exhaust treatment technologies are very efficient but expensive. Diesel PM oxidation catalysts with matching performance at a lower cost compared to the commercial precious metal catalysts are therefore much required as alternative, due to the vulnerabilities associated with the precious metals in terms of their limited reserves and limited geographical mineral distribution. Low-cost non-precious metal based manganese (Mn)-substituted strontium ferrite (SrFe0.9Mn0.1O3-δ) (SFM) catalysts have been systematically explored, which exhibit improved diesel particulate matter (DPM) catalytic oxidation performance. The available oxygen content in SFM is significantly higher compared to that of pure perovskite phase of strontium ferrite (SrFeO3-δ) (SFO) due to the Mn-substitution. The onset temperature (To) and maximum conversion temperature (Tm) of SFM for PM oxidation was observed at 270 and 380 °C, respectively, which is significantly lower than that of SFO (To = 295 °C; Tm = 440 °C). SFM showed multi-cycle, stable diesel PM oxidation performance compared to that of SFO and manganese oxide dispersed SFO. The durability of SFO is improved substantially upon substitution of Mn in its lattice and this catalyst possess potential for practical applications of diesel PM emission reduction.</description><subject>Catalysts</subject><subject>Catalytic oxidation</subject><subject>Diesel</subject><subject>Diesel engines</subject><subject>Diesel fuel</subject><subject>Diesel fuels</subject><subject>Durability</subject><subject>Emission control</subject><subject>Emissions control</subject><subject>Ferrites</subject><subject>Geographical distribution</subject><subject>Greenhouse gases</subject><subject>Heavy metals</subject><subject>Low cost</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxygen content</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>PM emissions</subject><subject>Strontium</subject><subject>Substitutes</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPxCAYRYnRxHH0D7gicd3KVwZKEzdmfMZJ3OiaUAqGplNGoBr_vTR17epuzvkeF6FLICUQ4Nd9aSczlBWpoIQKgNVHaAWipkUNjB6jFclUUVEOp-gsxp4QUgu2WaGXO2eiGfCs44MKyelpUMlgs3cxOj9i7ccU_ICn6MYPPPjvQvuYsFZJDT8Zx_uMB6eGeI5ObA5z8Zdr9P5w_7Z9Knavj8_b212haSVS0W0Eaw2QxpraaujAUgWccUobYbhtu0qwRgOxom0UI6IFbrlmnAjeaNHVdI2ulrmH4D8nE5Ps_RTGvFJWjAMQTkmTqWqhdPAxBmPlIbi9Cj8SiJxLk72cv5ZzaXIpLUs3i2Ty_V_OBBm1M6M2nQtGJ9l595_-C-HTdZk</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Khobragade, Rohini</creator><creator>Saravanan, Govindachetty</creator><creator>Einaga, Hisahiro</creator><creator>Nagashima, Hideo</creator><creator>Shukla, Pravesh</creator><creator>Gupta, Tarun</creator><creator>Kumar Agarwal, Avinash</creator><creator>Labhasetwar, Nitin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20211015</creationdate><title>Diesel fuel particulate emission control using low-cost catalytic materials</title><author>Khobragade, Rohini ; Saravanan, Govindachetty ; Einaga, Hisahiro ; Nagashima, Hideo ; Shukla, Pravesh ; Gupta, Tarun ; Kumar Agarwal, Avinash ; Labhasetwar, Nitin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d485be109fe7fc1d1f3a16563398e6fbd2859c10f8b9a508b16f6c560869c8d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysts</topic><topic>Catalytic oxidation</topic><topic>Diesel</topic><topic>Diesel engines</topic><topic>Diesel fuel</topic><topic>Diesel fuels</topic><topic>Durability</topic><topic>Emission control</topic><topic>Emissions control</topic><topic>Ferrites</topic><topic>Geographical distribution</topic><topic>Greenhouse gases</topic><topic>Heavy metals</topic><topic>Low cost</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxygen content</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>PM emissions</topic><topic>Strontium</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khobragade, Rohini</creatorcontrib><creatorcontrib>Saravanan, Govindachetty</creatorcontrib><creatorcontrib>Einaga, Hisahiro</creatorcontrib><creatorcontrib>Nagashima, Hideo</creatorcontrib><creatorcontrib>Shukla, Pravesh</creatorcontrib><creatorcontrib>Gupta, Tarun</creatorcontrib><creatorcontrib>Kumar Agarwal, Avinash</creatorcontrib><creatorcontrib>Labhasetwar, Nitin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khobragade, Rohini</au><au>Saravanan, Govindachetty</au><au>Einaga, Hisahiro</au><au>Nagashima, Hideo</au><au>Shukla, Pravesh</au><au>Gupta, Tarun</au><au>Kumar Agarwal, Avinash</au><au>Labhasetwar, Nitin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diesel fuel particulate emission control using low-cost catalytic materials</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>302</volume><spage>121157</spage><pages>121157-</pages><artnum>121157</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite improves not only its durability but also inhibits agglomeration of catalyst particles. Diesel fuel and engine is still projected as a relatively efficient and cleaner in terms of GHG emissions per unit energy generation provided PM emissions are controlled. The catalyst based after-exhaust treatment technologies are very efficient but expensive. Diesel PM oxidation catalysts with matching performance at a lower cost compared to the commercial precious metal catalysts are therefore much required as alternative, due to the vulnerabilities associated with the precious metals in terms of their limited reserves and limited geographical mineral distribution. Low-cost non-precious metal based manganese (Mn)-substituted strontium ferrite (SrFe0.9Mn0.1O3-δ) (SFM) catalysts have been systematically explored, which exhibit improved diesel particulate matter (DPM) catalytic oxidation performance. The available oxygen content in SFM is significantly higher compared to that of pure perovskite phase of strontium ferrite (SrFeO3-δ) (SFO) due to the Mn-substitution. The onset temperature (To) and maximum conversion temperature (Tm) of SFM for PM oxidation was observed at 270 and 380 °C, respectively, which is significantly lower than that of SFO (To = 295 °C; Tm = 440 °C). SFM showed multi-cycle, stable diesel PM oxidation performance compared to that of SFO and manganese oxide dispersed SFO. The durability of SFO is improved substantially upon substitution of Mn in its lattice and this catalyst possess potential for practical applications of diesel PM emission reduction.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.121157</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-10, Vol.302, p.121157, Article 121157
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2561106309
source Elsevier ScienceDirect Journals
subjects Catalysts
Catalytic oxidation
Diesel
Diesel engines
Diesel fuel
Diesel fuels
Durability
Emission control
Emissions control
Ferrites
Geographical distribution
Greenhouse gases
Heavy metals
Low cost
Manganese
Manganese oxides
Noble metals
Oxidation
Oxygen content
Particulate emissions
Particulate matter
Perovskite
Perovskites
PM emissions
Strontium
Substitutes
title Diesel fuel particulate emission control using low-cost catalytic materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diesel%20fuel%20particulate%20emission%20control%20using%20low-cost%20catalytic%20materials&rft.jtitle=Fuel%20(Guildford)&rft.au=Khobragade,%20Rohini&rft.date=2021-10-15&rft.volume=302&rft.spage=121157&rft.pages=121157-&rft.artnum=121157&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.121157&rft_dat=%3Cproquest_cross%3E2561106309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561106309&rft_id=info:pmid/&rft_els_id=S001623612101036X&rfr_iscdi=true