Diesel fuel particulate emission control using low-cost catalytic materials
[Display omitted] •Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite impr...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2021-10, Vol.302, p.121157, Article 121157 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 121157 |
container_title | Fuel (Guildford) |
container_volume | 302 |
creator | Khobragade, Rohini Saravanan, Govindachetty Einaga, Hisahiro Nagashima, Hideo Shukla, Pravesh Gupta, Tarun Kumar Agarwal, Avinash Labhasetwar, Nitin |
description | [Display omitted]
•Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite improves not only its durability but also inhibits agglomeration of catalyst particles.
Diesel fuel and engine is still projected as a relatively efficient and cleaner in terms of GHG emissions per unit energy generation provided PM emissions are controlled. The catalyst based after-exhaust treatment technologies are very efficient but expensive. Diesel PM oxidation catalysts with matching performance at a lower cost compared to the commercial precious metal catalysts are therefore much required as alternative, due to the vulnerabilities associated with the precious metals in terms of their limited reserves and limited geographical mineral distribution. Low-cost non-precious metal based manganese (Mn)-substituted strontium ferrite (SrFe0.9Mn0.1O3-δ) (SFM) catalysts have been systematically explored, which exhibit improved diesel particulate matter (DPM) catalytic oxidation performance. The available oxygen content in SFM is significantly higher compared to that of pure perovskite phase of strontium ferrite (SrFeO3-δ) (SFO) due to the Mn-substitution. The onset temperature (To) and maximum conversion temperature (Tm) of SFM for PM oxidation was observed at 270 and 380 °C, respectively, which is significantly lower than that of SFO (To = 295 °C; Tm = 440 °C). SFM showed multi-cycle, stable diesel PM oxidation performance compared to that of SFO and manganese oxide dispersed SFO. The durability of SFO is improved substantially upon substitution of Mn in its lattice and this catalyst possess potential for practical applications of diesel PM emission reduction. |
doi_str_mv | 10.1016/j.fuel.2021.121157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561106309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001623612101036X</els_id><sourcerecordid>2561106309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d485be109fe7fc1d1f3a16563398e6fbd2859c10f8b9a508b16f6c560869c8d73</originalsourceid><addsrcrecordid>eNp9kEtPxCAYRYnRxHH0D7gicd3KVwZKEzdmfMZJ3OiaUAqGplNGoBr_vTR17epuzvkeF6FLICUQ4Nd9aSczlBWpoIQKgNVHaAWipkUNjB6jFclUUVEOp-gsxp4QUgu2WaGXO2eiGfCs44MKyelpUMlgs3cxOj9i7ccU_ICn6MYPPPjvQvuYsFZJDT8Zx_uMB6eGeI5ObA5z8Zdr9P5w_7Z9Knavj8_b212haSVS0W0Eaw2QxpraaujAUgWccUobYbhtu0qwRgOxom0UI6IFbrlmnAjeaNHVdI2ulrmH4D8nE5Ps_RTGvFJWjAMQTkmTqWqhdPAxBmPlIbi9Cj8SiJxLk72cv5ZzaXIpLUs3i2Ty_V_OBBm1M6M2nQtGJ9l595_-C-HTdZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561106309</pqid></control><display><type>article</type><title>Diesel fuel particulate emission control using low-cost catalytic materials</title><source>Elsevier ScienceDirect Journals</source><creator>Khobragade, Rohini ; Saravanan, Govindachetty ; Einaga, Hisahiro ; Nagashima, Hideo ; Shukla, Pravesh ; Gupta, Tarun ; Kumar Agarwal, Avinash ; Labhasetwar, Nitin</creator><creatorcontrib>Khobragade, Rohini ; Saravanan, Govindachetty ; Einaga, Hisahiro ; Nagashima, Hideo ; Shukla, Pravesh ; Gupta, Tarun ; Kumar Agarwal, Avinash ; Labhasetwar, Nitin</creatorcontrib><description>[Display omitted]
•Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite improves not only its durability but also inhibits agglomeration of catalyst particles.
Diesel fuel and engine is still projected as a relatively efficient and cleaner in terms of GHG emissions per unit energy generation provided PM emissions are controlled. The catalyst based after-exhaust treatment technologies are very efficient but expensive. Diesel PM oxidation catalysts with matching performance at a lower cost compared to the commercial precious metal catalysts are therefore much required as alternative, due to the vulnerabilities associated with the precious metals in terms of their limited reserves and limited geographical mineral distribution. Low-cost non-precious metal based manganese (Mn)-substituted strontium ferrite (SrFe0.9Mn0.1O3-δ) (SFM) catalysts have been systematically explored, which exhibit improved diesel particulate matter (DPM) catalytic oxidation performance. The available oxygen content in SFM is significantly higher compared to that of pure perovskite phase of strontium ferrite (SrFeO3-δ) (SFO) due to the Mn-substitution. The onset temperature (To) and maximum conversion temperature (Tm) of SFM for PM oxidation was observed at 270 and 380 °C, respectively, which is significantly lower than that of SFO (To = 295 °C; Tm = 440 °C). SFM showed multi-cycle, stable diesel PM oxidation performance compared to that of SFO and manganese oxide dispersed SFO. The durability of SFO is improved substantially upon substitution of Mn in its lattice and this catalyst possess potential for practical applications of diesel PM emission reduction.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.121157</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Catalysts ; Catalytic oxidation ; Diesel ; Diesel engines ; Diesel fuel ; Diesel fuels ; Durability ; Emission control ; Emissions control ; Ferrites ; Geographical distribution ; Greenhouse gases ; Heavy metals ; Low cost ; Manganese ; Manganese oxides ; Noble metals ; Oxidation ; Oxygen content ; Particulate emissions ; Particulate matter ; Perovskite ; Perovskites ; PM emissions ; Strontium ; Substitutes</subject><ispartof>Fuel (Guildford), 2021-10, Vol.302, p.121157, Article 121157</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d485be109fe7fc1d1f3a16563398e6fbd2859c10f8b9a508b16f6c560869c8d73</citedby><cites>FETCH-LOGICAL-c328t-d485be109fe7fc1d1f3a16563398e6fbd2859c10f8b9a508b16f6c560869c8d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001623612101036X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Khobragade, Rohini</creatorcontrib><creatorcontrib>Saravanan, Govindachetty</creatorcontrib><creatorcontrib>Einaga, Hisahiro</creatorcontrib><creatorcontrib>Nagashima, Hideo</creatorcontrib><creatorcontrib>Shukla, Pravesh</creatorcontrib><creatorcontrib>Gupta, Tarun</creatorcontrib><creatorcontrib>Kumar Agarwal, Avinash</creatorcontrib><creatorcontrib>Labhasetwar, Nitin</creatorcontrib><title>Diesel fuel particulate emission control using low-cost catalytic materials</title><title>Fuel (Guildford)</title><description>[Display omitted]
•Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite improves not only its durability but also inhibits agglomeration of catalyst particles.
Diesel fuel and engine is still projected as a relatively efficient and cleaner in terms of GHG emissions per unit energy generation provided PM emissions are controlled. The catalyst based after-exhaust treatment technologies are very efficient but expensive. Diesel PM oxidation catalysts with matching performance at a lower cost compared to the commercial precious metal catalysts are therefore much required as alternative, due to the vulnerabilities associated with the precious metals in terms of their limited reserves and limited geographical mineral distribution. Low-cost non-precious metal based manganese (Mn)-substituted strontium ferrite (SrFe0.9Mn0.1O3-δ) (SFM) catalysts have been systematically explored, which exhibit improved diesel particulate matter (DPM) catalytic oxidation performance. The available oxygen content in SFM is significantly higher compared to that of pure perovskite phase of strontium ferrite (SrFeO3-δ) (SFO) due to the Mn-substitution. The onset temperature (To) and maximum conversion temperature (Tm) of SFM for PM oxidation was observed at 270 and 380 °C, respectively, which is significantly lower than that of SFO (To = 295 °C; Tm = 440 °C). SFM showed multi-cycle, stable diesel PM oxidation performance compared to that of SFO and manganese oxide dispersed SFO. The durability of SFO is improved substantially upon substitution of Mn in its lattice and this catalyst possess potential for practical applications of diesel PM emission reduction.</description><subject>Catalysts</subject><subject>Catalytic oxidation</subject><subject>Diesel</subject><subject>Diesel engines</subject><subject>Diesel fuel</subject><subject>Diesel fuels</subject><subject>Durability</subject><subject>Emission control</subject><subject>Emissions control</subject><subject>Ferrites</subject><subject>Geographical distribution</subject><subject>Greenhouse gases</subject><subject>Heavy metals</subject><subject>Low cost</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxygen content</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>PM emissions</subject><subject>Strontium</subject><subject>Substitutes</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPxCAYRYnRxHH0D7gicd3KVwZKEzdmfMZJ3OiaUAqGplNGoBr_vTR17epuzvkeF6FLICUQ4Nd9aSczlBWpoIQKgNVHaAWipkUNjB6jFclUUVEOp-gsxp4QUgu2WaGXO2eiGfCs44MKyelpUMlgs3cxOj9i7ccU_ICn6MYPPPjvQvuYsFZJDT8Zx_uMB6eGeI5ObA5z8Zdr9P5w_7Z9Knavj8_b212haSVS0W0Eaw2QxpraaujAUgWccUobYbhtu0qwRgOxom0UI6IFbrlmnAjeaNHVdI2ulrmH4D8nE5Ps_RTGvFJWjAMQTkmTqWqhdPAxBmPlIbi9Cj8SiJxLk72cv5ZzaXIpLUs3i2Ty_V_OBBm1M6M2nQtGJ9l595_-C-HTdZk</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Khobragade, Rohini</creator><creator>Saravanan, Govindachetty</creator><creator>Einaga, Hisahiro</creator><creator>Nagashima, Hideo</creator><creator>Shukla, Pravesh</creator><creator>Gupta, Tarun</creator><creator>Kumar Agarwal, Avinash</creator><creator>Labhasetwar, Nitin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20211015</creationdate><title>Diesel fuel particulate emission control using low-cost catalytic materials</title><author>Khobragade, Rohini ; Saravanan, Govindachetty ; Einaga, Hisahiro ; Nagashima, Hideo ; Shukla, Pravesh ; Gupta, Tarun ; Kumar Agarwal, Avinash ; Labhasetwar, Nitin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d485be109fe7fc1d1f3a16563398e6fbd2859c10f8b9a508b16f6c560869c8d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysts</topic><topic>Catalytic oxidation</topic><topic>Diesel</topic><topic>Diesel engines</topic><topic>Diesel fuel</topic><topic>Diesel fuels</topic><topic>Durability</topic><topic>Emission control</topic><topic>Emissions control</topic><topic>Ferrites</topic><topic>Geographical distribution</topic><topic>Greenhouse gases</topic><topic>Heavy metals</topic><topic>Low cost</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxygen content</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>PM emissions</topic><topic>Strontium</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khobragade, Rohini</creatorcontrib><creatorcontrib>Saravanan, Govindachetty</creatorcontrib><creatorcontrib>Einaga, Hisahiro</creatorcontrib><creatorcontrib>Nagashima, Hideo</creatorcontrib><creatorcontrib>Shukla, Pravesh</creatorcontrib><creatorcontrib>Gupta, Tarun</creatorcontrib><creatorcontrib>Kumar Agarwal, Avinash</creatorcontrib><creatorcontrib>Labhasetwar, Nitin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khobragade, Rohini</au><au>Saravanan, Govindachetty</au><au>Einaga, Hisahiro</au><au>Nagashima, Hideo</au><au>Shukla, Pravesh</au><au>Gupta, Tarun</au><au>Kumar Agarwal, Avinash</au><au>Labhasetwar, Nitin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diesel fuel particulate emission control using low-cost catalytic materials</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>302</volume><spage>121157</spage><pages>121157-</pages><artnum>121157</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•Manganese (Mn)-substituted strontium ferrite (SFM) showed enhanced diesel particulate matter (PM) oxidation performance.•SFM showed a multi-cycle, stable diesel PM oxidation performance compared with the reference catalysts.•Mn-substitution in the lattice of strontium ferrite improves not only its durability but also inhibits agglomeration of catalyst particles.
Diesel fuel and engine is still projected as a relatively efficient and cleaner in terms of GHG emissions per unit energy generation provided PM emissions are controlled. The catalyst based after-exhaust treatment technologies are very efficient but expensive. Diesel PM oxidation catalysts with matching performance at a lower cost compared to the commercial precious metal catalysts are therefore much required as alternative, due to the vulnerabilities associated with the precious metals in terms of their limited reserves and limited geographical mineral distribution. Low-cost non-precious metal based manganese (Mn)-substituted strontium ferrite (SrFe0.9Mn0.1O3-δ) (SFM) catalysts have been systematically explored, which exhibit improved diesel particulate matter (DPM) catalytic oxidation performance. The available oxygen content in SFM is significantly higher compared to that of pure perovskite phase of strontium ferrite (SrFeO3-δ) (SFO) due to the Mn-substitution. The onset temperature (To) and maximum conversion temperature (Tm) of SFM for PM oxidation was observed at 270 and 380 °C, respectively, which is significantly lower than that of SFO (To = 295 °C; Tm = 440 °C). SFM showed multi-cycle, stable diesel PM oxidation performance compared to that of SFO and manganese oxide dispersed SFO. The durability of SFO is improved substantially upon substitution of Mn in its lattice and this catalyst possess potential for practical applications of diesel PM emission reduction.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.121157</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2021-10, Vol.302, p.121157, Article 121157 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2561106309 |
source | Elsevier ScienceDirect Journals |
subjects | Catalysts Catalytic oxidation Diesel Diesel engines Diesel fuel Diesel fuels Durability Emission control Emissions control Ferrites Geographical distribution Greenhouse gases Heavy metals Low cost Manganese Manganese oxides Noble metals Oxidation Oxygen content Particulate emissions Particulate matter Perovskite Perovskites PM emissions Strontium Substitutes |
title | Diesel fuel particulate emission control using low-cost catalytic materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diesel%20fuel%20particulate%20emission%20control%20using%20low-cost%20catalytic%20materials&rft.jtitle=Fuel%20(Guildford)&rft.au=Khobragade,%20Rohini&rft.date=2021-10-15&rft.volume=302&rft.spage=121157&rft.pages=121157-&rft.artnum=121157&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.121157&rft_dat=%3Cproquest_cross%3E2561106309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561106309&rft_id=info:pmid/&rft_els_id=S001623612101036X&rfr_iscdi=true |