Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction

Microbial reduction of Fe­(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-08, Vol.55 (15), p.10821-10831
Hauptverfasser: Fritzsche, Andreas, Bosch, Julian, Sander, Michael, Schröder, Christian, Byrne, James M, Ritschel, Thomas, Joshi, Prachi, Maisch, Markus, Meckenstock, Rainer U, Kappler, Andreas, Totsche, Kai U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10831
container_issue 15
container_start_page 10821
container_title Environmental science & technology
container_volume 55
creator Fritzsche, Andreas
Bosch, Julian
Sander, Michael
Schröder, Christian
Byrne, James M
Ritschel, Thomas
Joshi, Prachi
Maisch, Markus
Meckenstock, Rainer U
Kappler, Andreas
Totsche, Kai U
description Microbial reduction of Fe­(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and includedunlike water-extractable OMcompounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe­(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe­(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe­(II) and prevented the passivation of the Fh surface by the adsorbed Fe­(II). Fe­(III)–OM coprecipitates forming at anoxic–oxic interfaces are thus likely readily reducible by Fe­(III)-reducing bacteria in redoximorphic soils.
doi_str_mv 10.1021/acs.est.1c01183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561104715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561104715</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-bc79789071c321a03b0d73b35de96664a1a46407ca5277f829a5cd32a48b8c583</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKdnrwEvinTLj6ZJj2M4LWwMnIIHobymqWZ0zUxa0P_elg1vnt7hfT_f9_ggdE3JhBJGp6DDxIR2QjWhVPETNKKCkUgoQU_RiBDKo5Qnb-foIoQtIYRxokbofe0_oLEar6BtjceVdzv8bEr3bXfO7z_7zcbZOuCZ1qY2HloTMDQl3nShBdsEvLLau8JCjRfmNsuyuwHvdGtdc4nOKqiDuTrOMXpdPLzMn6Ll-jGbz5YRcK7aqNAylSolkmrOKBBekFLygovSpEmSxEAhTmIiNQgmZaVYCkKXnEGsCqWF4mN0c-jde_fV9RLyret805_MmUgoJbGkok9ND6n-3xC8qfK9tzvwPzkl-aAw7xXmA31U2BP3B2JY_FX-l_4FYWBzFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561104715</pqid></control><display><type>article</type><title>Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction</title><source>American Chemical Society Journals</source><creator>Fritzsche, Andreas ; Bosch, Julian ; Sander, Michael ; Schröder, Christian ; Byrne, James M ; Ritschel, Thomas ; Joshi, Prachi ; Maisch, Markus ; Meckenstock, Rainer U ; Kappler, Andreas ; Totsche, Kai U</creator><creatorcontrib>Fritzsche, Andreas ; Bosch, Julian ; Sander, Michael ; Schröder, Christian ; Byrne, James M ; Ritschel, Thomas ; Joshi, Prachi ; Maisch, Markus ; Meckenstock, Rainer U ; Kappler, Andreas ; Totsche, Kai U</creatorcontrib><description>Microbial reduction of Fe­(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and includedunlike water-extractable OMcompounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe­(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe­(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe­(II) and prevented the passivation of the Fh surface by the adsorbed Fe­(II). Fe­(III)–OM coprecipitates forming at anoxic–oxic interfaces are thus likely readily reducible by Fe­(III)-reducing bacteria in redoximorphic soils.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c01183</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Anoxic conditions ; Biogeochemical Cycling ; Biological activity ; Columns (structural) ; Deceleration ; Electrons ; Interfaces ; Iron ; Microbial activity ; Microorganisms ; Minerals ; Mossbauer spectroscopy ; Organic chemistry ; Organic matter ; Organic soils ; Reduction ; Soil bacteria ; Soil columns ; Soil microorganisms ; Soils ; Uranium</subject><ispartof>Environmental science &amp; technology, 2021-08, Vol.55 (15), p.10821-10831</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 3, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-bc79789071c321a03b0d73b35de96664a1a46407ca5277f829a5cd32a48b8c583</citedby><cites>FETCH-LOGICAL-a338t-bc79789071c321a03b0d73b35de96664a1a46407ca5277f829a5cd32a48b8c583</cites><orcidid>0000-0001-7786-9546 ; 0000-0002-4399-7336 ; 0000-0001-5371-2691 ; 0000-0002-9922-1107 ; 0000-0002-3558-9500 ; 0000-0003-3383-2041 ; 0000-0002-7935-6039 ; 0000-0002-2692-213X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c01183$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c01183$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Fritzsche, Andreas</creatorcontrib><creatorcontrib>Bosch, Julian</creatorcontrib><creatorcontrib>Sander, Michael</creatorcontrib><creatorcontrib>Schröder, Christian</creatorcontrib><creatorcontrib>Byrne, James M</creatorcontrib><creatorcontrib>Ritschel, Thomas</creatorcontrib><creatorcontrib>Joshi, Prachi</creatorcontrib><creatorcontrib>Maisch, Markus</creatorcontrib><creatorcontrib>Meckenstock, Rainer U</creatorcontrib><creatorcontrib>Kappler, Andreas</creatorcontrib><creatorcontrib>Totsche, Kai U</creatorcontrib><title>Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microbial reduction of Fe­(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and includedunlike water-extractable OMcompounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe­(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe­(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe­(II) and prevented the passivation of the Fh surface by the adsorbed Fe­(II). Fe­(III)–OM coprecipitates forming at anoxic–oxic interfaces are thus likely readily reducible by Fe­(III)-reducing bacteria in redoximorphic soils.</description><subject>Anoxic conditions</subject><subject>Biogeochemical Cycling</subject><subject>Biological activity</subject><subject>Columns (structural)</subject><subject>Deceleration</subject><subject>Electrons</subject><subject>Interfaces</subject><subject>Iron</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Mossbauer spectroscopy</subject><subject>Organic chemistry</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Reduction</subject><subject>Soil bacteria</subject><subject>Soil columns</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Uranium</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKdnrwEvinTLj6ZJj2M4LWwMnIIHobymqWZ0zUxa0P_elg1vnt7hfT_f9_ggdE3JhBJGp6DDxIR2QjWhVPETNKKCkUgoQU_RiBDKo5Qnb-foIoQtIYRxokbofe0_oLEar6BtjceVdzv8bEr3bXfO7z_7zcbZOuCZ1qY2HloTMDQl3nShBdsEvLLau8JCjRfmNsuyuwHvdGtdc4nOKqiDuTrOMXpdPLzMn6Ll-jGbz5YRcK7aqNAylSolkmrOKBBekFLygovSpEmSxEAhTmIiNQgmZaVYCkKXnEGsCqWF4mN0c-jde_fV9RLyret805_MmUgoJbGkok9ND6n-3xC8qfK9tzvwPzkl-aAw7xXmA31U2BP3B2JY_FX-l_4FYWBzFg</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Fritzsche, Andreas</creator><creator>Bosch, Julian</creator><creator>Sander, Michael</creator><creator>Schröder, Christian</creator><creator>Byrne, James M</creator><creator>Ritschel, Thomas</creator><creator>Joshi, Prachi</creator><creator>Maisch, Markus</creator><creator>Meckenstock, Rainer U</creator><creator>Kappler, Andreas</creator><creator>Totsche, Kai U</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7786-9546</orcidid><orcidid>https://orcid.org/0000-0002-4399-7336</orcidid><orcidid>https://orcid.org/0000-0001-5371-2691</orcidid><orcidid>https://orcid.org/0000-0002-9922-1107</orcidid><orcidid>https://orcid.org/0000-0002-3558-9500</orcidid><orcidid>https://orcid.org/0000-0003-3383-2041</orcidid><orcidid>https://orcid.org/0000-0002-7935-6039</orcidid><orcidid>https://orcid.org/0000-0002-2692-213X</orcidid></search><sort><creationdate>20210803</creationdate><title>Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction</title><author>Fritzsche, Andreas ; Bosch, Julian ; Sander, Michael ; Schröder, Christian ; Byrne, James M ; Ritschel, Thomas ; Joshi, Prachi ; Maisch, Markus ; Meckenstock, Rainer U ; Kappler, Andreas ; Totsche, Kai U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-bc79789071c321a03b0d73b35de96664a1a46407ca5277f829a5cd32a48b8c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anoxic conditions</topic><topic>Biogeochemical Cycling</topic><topic>Biological activity</topic><topic>Columns (structural)</topic><topic>Deceleration</topic><topic>Electrons</topic><topic>Interfaces</topic><topic>Iron</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Mossbauer spectroscopy</topic><topic>Organic chemistry</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Reduction</topic><topic>Soil bacteria</topic><topic>Soil columns</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritzsche, Andreas</creatorcontrib><creatorcontrib>Bosch, Julian</creatorcontrib><creatorcontrib>Sander, Michael</creatorcontrib><creatorcontrib>Schröder, Christian</creatorcontrib><creatorcontrib>Byrne, James M</creatorcontrib><creatorcontrib>Ritschel, Thomas</creatorcontrib><creatorcontrib>Joshi, Prachi</creatorcontrib><creatorcontrib>Maisch, Markus</creatorcontrib><creatorcontrib>Meckenstock, Rainer U</creatorcontrib><creatorcontrib>Kappler, Andreas</creatorcontrib><creatorcontrib>Totsche, Kai U</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritzsche, Andreas</au><au>Bosch, Julian</au><au>Sander, Michael</au><au>Schröder, Christian</au><au>Byrne, James M</au><au>Ritschel, Thomas</au><au>Joshi, Prachi</au><au>Maisch, Markus</au><au>Meckenstock, Rainer U</au><au>Kappler, Andreas</au><au>Totsche, Kai U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-08-03</date><risdate>2021</risdate><volume>55</volume><issue>15</issue><spage>10821</spage><epage>10831</epage><pages>10821-10831</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Microbial reduction of Fe­(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and includedunlike water-extractable OMcompounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe­(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe­(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe­(II) and prevented the passivation of the Fh surface by the adsorbed Fe­(II). Fe­(III)–OM coprecipitates forming at anoxic–oxic interfaces are thus likely readily reducible by Fe­(III)-reducing bacteria in redoximorphic soils.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.1c01183</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7786-9546</orcidid><orcidid>https://orcid.org/0000-0002-4399-7336</orcidid><orcidid>https://orcid.org/0000-0001-5371-2691</orcidid><orcidid>https://orcid.org/0000-0002-9922-1107</orcidid><orcidid>https://orcid.org/0000-0002-3558-9500</orcidid><orcidid>https://orcid.org/0000-0003-3383-2041</orcidid><orcidid>https://orcid.org/0000-0002-7935-6039</orcidid><orcidid>https://orcid.org/0000-0002-2692-213X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-08, Vol.55 (15), p.10821-10831
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2561104715
source American Chemical Society Journals
subjects Anoxic conditions
Biogeochemical Cycling
Biological activity
Columns (structural)
Deceleration
Electrons
Interfaces
Iron
Microbial activity
Microorganisms
Minerals
Mossbauer spectroscopy
Organic chemistry
Organic matter
Organic soils
Reduction
Soil bacteria
Soil columns
Soil microorganisms
Soils
Uranium
title Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Matter%20from%20Redoximorphic%20Soils%20Accelerates%20and%20Sustains%20Microbial%20Fe(III)%20Reduction&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Fritzsche,%20Andreas&rft.date=2021-08-03&rft.volume=55&rft.issue=15&rft.spage=10821&rft.epage=10831&rft.pages=10821-10831&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c01183&rft_dat=%3Cproquest_cross%3E2561104715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561104715&rft_id=info:pmid/&rfr_iscdi=true