Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction
Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focus...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2021-08, Vol.55 (15), p.10821-10831 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10831 |
---|---|
container_issue | 15 |
container_start_page | 10821 |
container_title | Environmental science & technology |
container_volume | 55 |
creator | Fritzsche, Andreas Bosch, Julian Sander, Michael Schröder, Christian Byrne, James M Ritschel, Thomas Joshi, Prachi Maisch, Markus Meckenstock, Rainer U Kappler, Andreas Totsche, Kai U |
description | Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and includedunlike water-extractable OMcompounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)–OM coprecipitates forming at anoxic–oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils. |
doi_str_mv | 10.1021/acs.est.1c01183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561104715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561104715</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-bc79789071c321a03b0d73b35de96664a1a46407ca5277f829a5cd32a48b8c583</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKdnrwEvinTLj6ZJj2M4LWwMnIIHobymqWZ0zUxa0P_elg1vnt7hfT_f9_ggdE3JhBJGp6DDxIR2QjWhVPETNKKCkUgoQU_RiBDKo5Qnb-foIoQtIYRxokbofe0_oLEar6BtjceVdzv8bEr3bXfO7z_7zcbZOuCZ1qY2HloTMDQl3nShBdsEvLLau8JCjRfmNsuyuwHvdGtdc4nOKqiDuTrOMXpdPLzMn6Ll-jGbz5YRcK7aqNAylSolkmrOKBBekFLygovSpEmSxEAhTmIiNQgmZaVYCkKXnEGsCqWF4mN0c-jde_fV9RLyret805_MmUgoJbGkok9ND6n-3xC8qfK9tzvwPzkl-aAw7xXmA31U2BP3B2JY_FX-l_4FYWBzFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561104715</pqid></control><display><type>article</type><title>Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction</title><source>American Chemical Society Journals</source><creator>Fritzsche, Andreas ; Bosch, Julian ; Sander, Michael ; Schröder, Christian ; Byrne, James M ; Ritschel, Thomas ; Joshi, Prachi ; Maisch, Markus ; Meckenstock, Rainer U ; Kappler, Andreas ; Totsche, Kai U</creator><creatorcontrib>Fritzsche, Andreas ; Bosch, Julian ; Sander, Michael ; Schröder, Christian ; Byrne, James M ; Ritschel, Thomas ; Joshi, Prachi ; Maisch, Markus ; Meckenstock, Rainer U ; Kappler, Andreas ; Totsche, Kai U</creatorcontrib><description>Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and includedunlike water-extractable OMcompounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)–OM coprecipitates forming at anoxic–oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c01183</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Anoxic conditions ; Biogeochemical Cycling ; Biological activity ; Columns (structural) ; Deceleration ; Electrons ; Interfaces ; Iron ; Microbial activity ; Microorganisms ; Minerals ; Mossbauer spectroscopy ; Organic chemistry ; Organic matter ; Organic soils ; Reduction ; Soil bacteria ; Soil columns ; Soil microorganisms ; Soils ; Uranium</subject><ispartof>Environmental science & technology, 2021-08, Vol.55 (15), p.10821-10831</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 3, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-bc79789071c321a03b0d73b35de96664a1a46407ca5277f829a5cd32a48b8c583</citedby><cites>FETCH-LOGICAL-a338t-bc79789071c321a03b0d73b35de96664a1a46407ca5277f829a5cd32a48b8c583</cites><orcidid>0000-0001-7786-9546 ; 0000-0002-4399-7336 ; 0000-0001-5371-2691 ; 0000-0002-9922-1107 ; 0000-0002-3558-9500 ; 0000-0003-3383-2041 ; 0000-0002-7935-6039 ; 0000-0002-2692-213X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c01183$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c01183$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Fritzsche, Andreas</creatorcontrib><creatorcontrib>Bosch, Julian</creatorcontrib><creatorcontrib>Sander, Michael</creatorcontrib><creatorcontrib>Schröder, Christian</creatorcontrib><creatorcontrib>Byrne, James M</creatorcontrib><creatorcontrib>Ritschel, Thomas</creatorcontrib><creatorcontrib>Joshi, Prachi</creatorcontrib><creatorcontrib>Maisch, Markus</creatorcontrib><creatorcontrib>Meckenstock, Rainer U</creatorcontrib><creatorcontrib>Kappler, Andreas</creatorcontrib><creatorcontrib>Totsche, Kai U</creatorcontrib><title>Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and includedunlike water-extractable OMcompounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)–OM coprecipitates forming at anoxic–oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils.</description><subject>Anoxic conditions</subject><subject>Biogeochemical Cycling</subject><subject>Biological activity</subject><subject>Columns (structural)</subject><subject>Deceleration</subject><subject>Electrons</subject><subject>Interfaces</subject><subject>Iron</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Mossbauer spectroscopy</subject><subject>Organic chemistry</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Reduction</subject><subject>Soil bacteria</subject><subject>Soil columns</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Uranium</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKdnrwEvinTLj6ZJj2M4LWwMnIIHobymqWZ0zUxa0P_elg1vnt7hfT_f9_ggdE3JhBJGp6DDxIR2QjWhVPETNKKCkUgoQU_RiBDKo5Qnb-foIoQtIYRxokbofe0_oLEar6BtjceVdzv8bEr3bXfO7z_7zcbZOuCZ1qY2HloTMDQl3nShBdsEvLLau8JCjRfmNsuyuwHvdGtdc4nOKqiDuTrOMXpdPLzMn6Ll-jGbz5YRcK7aqNAylSolkmrOKBBekFLygovSpEmSxEAhTmIiNQgmZaVYCkKXnEGsCqWF4mN0c-jde_fV9RLyret805_MmUgoJbGkok9ND6n-3xC8qfK9tzvwPzkl-aAw7xXmA31U2BP3B2JY_FX-l_4FYWBzFg</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Fritzsche, Andreas</creator><creator>Bosch, Julian</creator><creator>Sander, Michael</creator><creator>Schröder, Christian</creator><creator>Byrne, James M</creator><creator>Ritschel, Thomas</creator><creator>Joshi, Prachi</creator><creator>Maisch, Markus</creator><creator>Meckenstock, Rainer U</creator><creator>Kappler, Andreas</creator><creator>Totsche, Kai U</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7786-9546</orcidid><orcidid>https://orcid.org/0000-0002-4399-7336</orcidid><orcidid>https://orcid.org/0000-0001-5371-2691</orcidid><orcidid>https://orcid.org/0000-0002-9922-1107</orcidid><orcidid>https://orcid.org/0000-0002-3558-9500</orcidid><orcidid>https://orcid.org/0000-0003-3383-2041</orcidid><orcidid>https://orcid.org/0000-0002-7935-6039</orcidid><orcidid>https://orcid.org/0000-0002-2692-213X</orcidid></search><sort><creationdate>20210803</creationdate><title>Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction</title><author>Fritzsche, Andreas ; Bosch, Julian ; Sander, Michael ; Schröder, Christian ; Byrne, James M ; Ritschel, Thomas ; Joshi, Prachi ; Maisch, Markus ; Meckenstock, Rainer U ; Kappler, Andreas ; Totsche, Kai U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-bc79789071c321a03b0d73b35de96664a1a46407ca5277f829a5cd32a48b8c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anoxic conditions</topic><topic>Biogeochemical Cycling</topic><topic>Biological activity</topic><topic>Columns (structural)</topic><topic>Deceleration</topic><topic>Electrons</topic><topic>Interfaces</topic><topic>Iron</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Mossbauer spectroscopy</topic><topic>Organic chemistry</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Reduction</topic><topic>Soil bacteria</topic><topic>Soil columns</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritzsche, Andreas</creatorcontrib><creatorcontrib>Bosch, Julian</creatorcontrib><creatorcontrib>Sander, Michael</creatorcontrib><creatorcontrib>Schröder, Christian</creatorcontrib><creatorcontrib>Byrne, James M</creatorcontrib><creatorcontrib>Ritschel, Thomas</creatorcontrib><creatorcontrib>Joshi, Prachi</creatorcontrib><creatorcontrib>Maisch, Markus</creatorcontrib><creatorcontrib>Meckenstock, Rainer U</creatorcontrib><creatorcontrib>Kappler, Andreas</creatorcontrib><creatorcontrib>Totsche, Kai U</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritzsche, Andreas</au><au>Bosch, Julian</au><au>Sander, Michael</au><au>Schröder, Christian</au><au>Byrne, James M</au><au>Ritschel, Thomas</au><au>Joshi, Prachi</au><au>Maisch, Markus</au><au>Meckenstock, Rainer U</au><au>Kappler, Andreas</au><au>Totsche, Kai U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-08-03</date><risdate>2021</risdate><volume>55</volume><issue>15</issue><spage>10821</spage><epage>10831</epage><pages>10821-10831</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and includedunlike water-extractable OMcompounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)–OM coprecipitates forming at anoxic–oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.1c01183</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7786-9546</orcidid><orcidid>https://orcid.org/0000-0002-4399-7336</orcidid><orcidid>https://orcid.org/0000-0001-5371-2691</orcidid><orcidid>https://orcid.org/0000-0002-9922-1107</orcidid><orcidid>https://orcid.org/0000-0002-3558-9500</orcidid><orcidid>https://orcid.org/0000-0003-3383-2041</orcidid><orcidid>https://orcid.org/0000-0002-7935-6039</orcidid><orcidid>https://orcid.org/0000-0002-2692-213X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2021-08, Vol.55 (15), p.10821-10831 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2561104715 |
source | American Chemical Society Journals |
subjects | Anoxic conditions Biogeochemical Cycling Biological activity Columns (structural) Deceleration Electrons Interfaces Iron Microbial activity Microorganisms Minerals Mossbauer spectroscopy Organic chemistry Organic matter Organic soils Reduction Soil bacteria Soil columns Soil microorganisms Soils Uranium |
title | Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Matter%20from%20Redoximorphic%20Soils%20Accelerates%20and%20Sustains%20Microbial%20Fe(III)%20Reduction&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Fritzsche,%20Andreas&rft.date=2021-08-03&rft.volume=55&rft.issue=15&rft.spage=10821&rft.epage=10831&rft.pages=10821-10831&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c01183&rft_dat=%3Cproquest_cross%3E2561104715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561104715&rft_id=info:pmid/&rfr_iscdi=true |