Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures
•Five different lignocellulosic biomass feedstocks were hydrothermally treated.•Elevated hydrothermal conditions linked to structural lignocellulosic changes.•A novel method for quantifying the effects of hydrothermal treatment.•Hydrothermal treatment has a higher impact on higher hemicellulose-cell...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2021-10, Vol.302, p.121166, Article 121166 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 121166 |
container_title | Fuel (Guildford) |
container_volume | 302 |
creator | Güleç, Fatih Riesco, Luis Miguel Garcia Williams, Orla Kostas, Emily T. Samson, Abby Lester, Edward |
description | •Five different lignocellulosic biomass feedstocks were hydrothermally treated.•Elevated hydrothermal conditions linked to structural lignocellulosic changes.•A novel method for quantifying the effects of hydrothermal treatment.•Hydrothermal treatment has a higher impact on higher hemicellulose-cellulose structures.
Five biomass feedstocks (Coffee residues, Rice waste, Whitewood, Zilkha black, and Lignin) were hydrothermally processed in a semi-continuous flow rig using 9 different processing conditions (75, 150, 250 °C, and 1, 50, 240 bar). Solid residues produced at low temperature ( |
doi_str_mv | 10.1016/j.fuel.2021.121166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561104498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121010450</els_id><sourcerecordid>2561104498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e5c39e564d8604ea17d62a8237c2a246c628768a370f9730d661c576c0d178c53</originalsourceid><addsrcrecordid>eNp9kL1KBDEUhYMouK6-gFXAetb8zCSzYCPiHwg2Wod4c8fNOjvRJCPYWfgGvqFPYoa1trrNd865fIQcc7bgjKvT9aIbsV8IJviCC86V2iEz3mpZad7IXTJjhaqEVHyfHKS0Zozptqln5Ovmw8WQVxg3tqcQhneMyYeBho4633UYcci0989DAOz7sQ_JA33yYWNToh2iSznAS6I_n9_0svCQp2gppK-xRApUSp3PpTPR0rua9mBlI005jpDHiOmQ7HW2T3j0d-fk8ery4eKmuru_vr04v6tAapErbEAusVG1axWr0XLtlLCtkBqEFbUCJVqtWis165ZaMqcUh0YrYI7rFho5Jyfb3vLa24gpm3UY41AmjWgU56yul22hxJaCGFKK2JnX6Dc2fhjOzGTbrM1k20y2zdZ2CZ1tQ1j-f_cYTQKPA6DzsTgxLvj_4r9qpouP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561104498</pqid></control><display><type>article</type><title>Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures</title><source>Elsevier ScienceDirect Journals</source><creator>Güleç, Fatih ; Riesco, Luis Miguel Garcia ; Williams, Orla ; Kostas, Emily T. ; Samson, Abby ; Lester, Edward</creator><creatorcontrib>Güleç, Fatih ; Riesco, Luis Miguel Garcia ; Williams, Orla ; Kostas, Emily T. ; Samson, Abby ; Lester, Edward</creatorcontrib><description>•Five different lignocellulosic biomass feedstocks were hydrothermally treated.•Elevated hydrothermal conditions linked to structural lignocellulosic changes.•A novel method for quantifying the effects of hydrothermal treatment.•Hydrothermal treatment has a higher impact on higher hemicellulose-cellulose structures.
Five biomass feedstocks (Coffee residues, Rice waste, Whitewood, Zilkha black, and Lignin) were hydrothermally processed in a semi-continuous flow rig using 9 different processing conditions (75, 150, 250 °C, and 1, 50, 240 bar). Solid residues produced at low temperature (<150 °C) did not show significant structural changes. At more severe conditions, structural changes could be linked to the lignocellulosic composition and divided into three categories: (i) biomass with higher hemicellulose-cellulose and lower cellulose-lignin structures, (ii) lower hemicellulose-cellulose and higher cellulose-lignin structures, and (iii) only cellulose-lignin structures. Both hemicellulose and cellulose structures in category (i) and (ii) were successfully degraded under subcritical conditions (250 °C and 50 bar) to produce hydrochar with higher lignin content. Biomasses with higher levels of lignin did not show the same degree of transformation. Category (i) produced a low hydrochar yield (39 wt%) due to the degradation of higher hemicellulose-cellulose structures. Category (ii) had higher hydrochar yields (58–62 wt%) due to the lower amount of cellulose and hemicellulose. Category (iii) had the highest hydrochar yields (73–90 wt%) thanks to the lack of hemicellulose and lower cellulosic structures. A novel concept called “displacement”, based on a thermogravimetric profiling method, was used to quantify changes in the pyrolysis behaviour of the hydrochar compared to the original feedstock. The degree of “displacement” correlated with hydrochar yield and reactivity, the highest level of displacement was observed with category (i- higher hemicellulose-cellulose biomasses) while the lowest displacement was observed with category (iii- higher lignin biomasses). This novel technique could be used to quantify the effects of hydrothermal treatment on any given biomass.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.121166</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biodegradation ; Bioenergy ; Biomass ; Cellulose ; Coffee ; Continuous flow ; Displacement ; Hemicellulose ; Hydrochar ; Hydrothermal conversion ; Hydrothermal treatment ; Lignin ; Lignocellulose ; Lignocellulosic Biomass ; Low temperature ; Pyrolysis ; Raw materials ; Residues ; Yield</subject><ispartof>Fuel (Guildford), 2021-10, Vol.302, p.121166, Article 121166</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e5c39e564d8604ea17d62a8237c2a246c628768a370f9730d661c576c0d178c53</citedby><cites>FETCH-LOGICAL-c372t-e5c39e564d8604ea17d62a8237c2a246c628768a370f9730d661c576c0d178c53</cites><orcidid>0000-0002-1979-9989 ; 0000-0003-3371-3288 ; 0000-0002-0365-3811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236121010450$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Güleç, Fatih</creatorcontrib><creatorcontrib>Riesco, Luis Miguel Garcia</creatorcontrib><creatorcontrib>Williams, Orla</creatorcontrib><creatorcontrib>Kostas, Emily T.</creatorcontrib><creatorcontrib>Samson, Abby</creatorcontrib><creatorcontrib>Lester, Edward</creatorcontrib><title>Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures</title><title>Fuel (Guildford)</title><description>•Five different lignocellulosic biomass feedstocks were hydrothermally treated.•Elevated hydrothermal conditions linked to structural lignocellulosic changes.•A novel method for quantifying the effects of hydrothermal treatment.•Hydrothermal treatment has a higher impact on higher hemicellulose-cellulose structures.
Five biomass feedstocks (Coffee residues, Rice waste, Whitewood, Zilkha black, and Lignin) were hydrothermally processed in a semi-continuous flow rig using 9 different processing conditions (75, 150, 250 °C, and 1, 50, 240 bar). Solid residues produced at low temperature (<150 °C) did not show significant structural changes. At more severe conditions, structural changes could be linked to the lignocellulosic composition and divided into three categories: (i) biomass with higher hemicellulose-cellulose and lower cellulose-lignin structures, (ii) lower hemicellulose-cellulose and higher cellulose-lignin structures, and (iii) only cellulose-lignin structures. Both hemicellulose and cellulose structures in category (i) and (ii) were successfully degraded under subcritical conditions (250 °C and 50 bar) to produce hydrochar with higher lignin content. Biomasses with higher levels of lignin did not show the same degree of transformation. Category (i) produced a low hydrochar yield (39 wt%) due to the degradation of higher hemicellulose-cellulose structures. Category (ii) had higher hydrochar yields (58–62 wt%) due to the lower amount of cellulose and hemicellulose. Category (iii) had the highest hydrochar yields (73–90 wt%) thanks to the lack of hemicellulose and lower cellulosic structures. A novel concept called “displacement”, based on a thermogravimetric profiling method, was used to quantify changes in the pyrolysis behaviour of the hydrochar compared to the original feedstock. The degree of “displacement” correlated with hydrochar yield and reactivity, the highest level of displacement was observed with category (i- higher hemicellulose-cellulose biomasses) while the lowest displacement was observed with category (iii- higher lignin biomasses). This novel technique could be used to quantify the effects of hydrothermal treatment on any given biomass.</description><subject>Biodegradation</subject><subject>Bioenergy</subject><subject>Biomass</subject><subject>Cellulose</subject><subject>Coffee</subject><subject>Continuous flow</subject><subject>Displacement</subject><subject>Hemicellulose</subject><subject>Hydrochar</subject><subject>Hydrothermal conversion</subject><subject>Hydrothermal treatment</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Lignocellulosic Biomass</subject><subject>Low temperature</subject><subject>Pyrolysis</subject><subject>Raw materials</subject><subject>Residues</subject><subject>Yield</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1KBDEUhYMouK6-gFXAetb8zCSzYCPiHwg2Wod4c8fNOjvRJCPYWfgGvqFPYoa1trrNd865fIQcc7bgjKvT9aIbsV8IJviCC86V2iEz3mpZad7IXTJjhaqEVHyfHKS0Zozptqln5Ovmw8WQVxg3tqcQhneMyYeBho4633UYcci0989DAOz7sQ_JA33yYWNToh2iSznAS6I_n9_0svCQp2gppK-xRApUSp3PpTPR0rua9mBlI005jpDHiOmQ7HW2T3j0d-fk8ery4eKmuru_vr04v6tAapErbEAusVG1axWr0XLtlLCtkBqEFbUCJVqtWis165ZaMqcUh0YrYI7rFho5Jyfb3vLa24gpm3UY41AmjWgU56yul22hxJaCGFKK2JnX6Dc2fhjOzGTbrM1k20y2zdZ2CZ1tQ1j-f_cYTQKPA6DzsTgxLvj_4r9qpouP</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Güleç, Fatih</creator><creator>Riesco, Luis Miguel Garcia</creator><creator>Williams, Orla</creator><creator>Kostas, Emily T.</creator><creator>Samson, Abby</creator><creator>Lester, Edward</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-1979-9989</orcidid><orcidid>https://orcid.org/0000-0003-3371-3288</orcidid><orcidid>https://orcid.org/0000-0002-0365-3811</orcidid></search><sort><creationdate>20211015</creationdate><title>Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures</title><author>Güleç, Fatih ; Riesco, Luis Miguel Garcia ; Williams, Orla ; Kostas, Emily T. ; Samson, Abby ; Lester, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e5c39e564d8604ea17d62a8237c2a246c628768a370f9730d661c576c0d178c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodegradation</topic><topic>Bioenergy</topic><topic>Biomass</topic><topic>Cellulose</topic><topic>Coffee</topic><topic>Continuous flow</topic><topic>Displacement</topic><topic>Hemicellulose</topic><topic>Hydrochar</topic><topic>Hydrothermal conversion</topic><topic>Hydrothermal treatment</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Lignocellulosic Biomass</topic><topic>Low temperature</topic><topic>Pyrolysis</topic><topic>Raw materials</topic><topic>Residues</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Güleç, Fatih</creatorcontrib><creatorcontrib>Riesco, Luis Miguel Garcia</creatorcontrib><creatorcontrib>Williams, Orla</creatorcontrib><creatorcontrib>Kostas, Emily T.</creatorcontrib><creatorcontrib>Samson, Abby</creatorcontrib><creatorcontrib>Lester, Edward</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güleç, Fatih</au><au>Riesco, Luis Miguel Garcia</au><au>Williams, Orla</au><au>Kostas, Emily T.</au><au>Samson, Abby</au><au>Lester, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>302</volume><spage>121166</spage><pages>121166-</pages><artnum>121166</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Five different lignocellulosic biomass feedstocks were hydrothermally treated.•Elevated hydrothermal conditions linked to structural lignocellulosic changes.•A novel method for quantifying the effects of hydrothermal treatment.•Hydrothermal treatment has a higher impact on higher hemicellulose-cellulose structures.
Five biomass feedstocks (Coffee residues, Rice waste, Whitewood, Zilkha black, and Lignin) were hydrothermally processed in a semi-continuous flow rig using 9 different processing conditions (75, 150, 250 °C, and 1, 50, 240 bar). Solid residues produced at low temperature (<150 °C) did not show significant structural changes. At more severe conditions, structural changes could be linked to the lignocellulosic composition and divided into three categories: (i) biomass with higher hemicellulose-cellulose and lower cellulose-lignin structures, (ii) lower hemicellulose-cellulose and higher cellulose-lignin structures, and (iii) only cellulose-lignin structures. Both hemicellulose and cellulose structures in category (i) and (ii) were successfully degraded under subcritical conditions (250 °C and 50 bar) to produce hydrochar with higher lignin content. Biomasses with higher levels of lignin did not show the same degree of transformation. Category (i) produced a low hydrochar yield (39 wt%) due to the degradation of higher hemicellulose-cellulose structures. Category (ii) had higher hydrochar yields (58–62 wt%) due to the lower amount of cellulose and hemicellulose. Category (iii) had the highest hydrochar yields (73–90 wt%) thanks to the lack of hemicellulose and lower cellulosic structures. A novel concept called “displacement”, based on a thermogravimetric profiling method, was used to quantify changes in the pyrolysis behaviour of the hydrochar compared to the original feedstock. The degree of “displacement” correlated with hydrochar yield and reactivity, the highest level of displacement was observed with category (i- higher hemicellulose-cellulose biomasses) while the lowest displacement was observed with category (iii- higher lignin biomasses). This novel technique could be used to quantify the effects of hydrothermal treatment on any given biomass.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.121166</doi><orcidid>https://orcid.org/0000-0002-1979-9989</orcidid><orcidid>https://orcid.org/0000-0003-3371-3288</orcidid><orcidid>https://orcid.org/0000-0002-0365-3811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2021-10, Vol.302, p.121166, Article 121166 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2561104498 |
source | Elsevier ScienceDirect Journals |
subjects | Biodegradation Bioenergy Biomass Cellulose Coffee Continuous flow Displacement Hemicellulose Hydrochar Hydrothermal conversion Hydrothermal treatment Lignin Lignocellulose Lignocellulosic Biomass Low temperature Pyrolysis Raw materials Residues Yield |
title | Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20conversion%20of%20different%20lignocellulosic%20biomass%20feedstocks%20%E2%80%93%20Effect%20of%20the%20process%20conditions%20on%20hydrochar%20structures&rft.jtitle=Fuel%20(Guildford)&rft.au=G%C3%BCle%C3%A7,%20Fatih&rft.date=2021-10-15&rft.volume=302&rft.spage=121166&rft.pages=121166-&rft.artnum=121166&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.121166&rft_dat=%3Cproquest_cross%3E2561104498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561104498&rft_id=info:pmid/&rft_els_id=S0016236121010450&rfr_iscdi=true |