Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics

•The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2021-07, Vol.358 (11), p.5883-5908
Hauptverfasser: Zhang, Bohan, Lu, Shaobo, Wu, Wenjuan, Li, Caixia, Lu, Jiafeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5908
container_issue 11
container_start_page 5883
container_title Journal of the Franklin Institute
container_volume 358
creator Zhang, Bohan
Lu, Shaobo
Wu, Wenjuan
Li, Caixia
Lu, Jiafeng
description •The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theory is adopted to model the interaction among various control targets. A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types.
doi_str_mv 10.1016/j.jfranklin.2021.05.034
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2561103712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001600322100329X</els_id><sourcerecordid>2561103712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-1b63cee5a6e2ce11fa1e78e24ea38b6339ec7bdbd1dddee40b162f1bfc963ecf3</originalsourceid><addsrcrecordid>eNqNkU2LHCEQhiUkkMkmvyFCjqE7VTrTPXNchnzBQiAkZ7G1zNgxulF7lj3lr8ehl70mgkjh-5T6yNhrhB4Bh3dzP7us48_gYy9AYA-7HuT2Cdvgfjx0YjjIp2wDLdoBSPGcvShlbuWIABv252uallK500uoXU2BWq_KTYo1p8Bdym0uubs7EQXuo_Vnbxcdwj3Xpi66kuUUyNTsDT_TyZtAF7p4S9nHH9xmf6bMS6W1NiedG9mKUr0pL9kzp0OhVw_rFfv-4f2346fu5svHz8frm87IrawdToM0RDs9kDCE6DTSuCexJS33bU8eyIyTnSxaa4m2MOEgHE7OHAZJxskr9mbte5vT74VKVXN7VmxHKrEbEEGOKFpqXFMmp1IyOXWb_S-d7xWCuthWs3q0rS62FexUs93Ityt5R1NyxXiKhh5pABhBQDPeBsqW3v9_-uirrj7FY1pibej1ilKzdfaU1QNufW7foGzy_7zsXyoKsvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561103712</pqid></control><display><type>article</type><title>Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Bohan ; Lu, Shaobo ; Wu, Wenjuan ; Li, Caixia ; Lu, Jiafeng</creator><creatorcontrib>Zhang, Bohan ; Lu, Shaobo ; Wu, Wenjuan ; Li, Caixia ; Lu, Jiafeng</creatorcontrib><description>•The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theory is adopted to model the interaction among various control targets. A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2021.05.034</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Active control ; Actuators ; Automation &amp; Control Systems ; Closed loop systems ; Control stability ; Electric vehicles ; Engineering ; Engineering, Electrical &amp; Electronic ; Engineering, Multidisciplinary ; Fault diagnosis ; Fault tolerance ; Feedback control ; Feedback control systems ; Feedback linearization ; Game theory ; Isomorphism ; Mathematics ; Mathematics, Interdisciplinary Applications ; Physical Sciences ; Robust control ; Science &amp; Technology ; Sliding mode control ; Steering ; Subsystems ; Technology</subject><ispartof>Journal of the Franklin Institute, 2021-07, Vol.358 (11), p.5883-5908</ispartof><rights>2021 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000702010000013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c343t-1b63cee5a6e2ce11fa1e78e24ea38b6339ec7bdbd1dddee40b162f1bfc963ecf3</citedby><cites>FETCH-LOGICAL-c343t-1b63cee5a6e2ce11fa1e78e24ea38b6339ec7bdbd1dddee40b162f1bfc963ecf3</cites><orcidid>0000-0003-4279-4155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2021.05.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Zhang, Bohan</creatorcontrib><creatorcontrib>Lu, Shaobo</creatorcontrib><creatorcontrib>Wu, Wenjuan</creatorcontrib><creatorcontrib>Li, Caixia</creatorcontrib><creatorcontrib>Lu, Jiafeng</creatorcontrib><title>Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics</title><title>Journal of the Franklin Institute</title><addtitle>J FRANKLIN I</addtitle><description>•The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theory is adopted to model the interaction among various control targets. A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types.</description><subject>Active control</subject><subject>Actuators</subject><subject>Automation &amp; Control Systems</subject><subject>Closed loop systems</subject><subject>Control stability</subject><subject>Electric vehicles</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Engineering, Multidisciplinary</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Feedback linearization</subject><subject>Game theory</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Physical Sciences</subject><subject>Robust control</subject><subject>Science &amp; Technology</subject><subject>Sliding mode control</subject><subject>Steering</subject><subject>Subsystems</subject><subject>Technology</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU2LHCEQhiUkkMkmvyFCjqE7VTrTPXNchnzBQiAkZ7G1zNgxulF7lj3lr8ehl70mgkjh-5T6yNhrhB4Bh3dzP7us48_gYy9AYA-7HuT2Cdvgfjx0YjjIp2wDLdoBSPGcvShlbuWIABv252uallK500uoXU2BWq_KTYo1p8Bdym0uubs7EQXuo_Vnbxcdwj3Xpi66kuUUyNTsDT_TyZtAF7p4S9nHH9xmf6bMS6W1NiedG9mKUr0pL9kzp0OhVw_rFfv-4f2346fu5svHz8frm87IrawdToM0RDs9kDCE6DTSuCexJS33bU8eyIyTnSxaa4m2MOEgHE7OHAZJxskr9mbte5vT74VKVXN7VmxHKrEbEEGOKFpqXFMmp1IyOXWb_S-d7xWCuthWs3q0rS62FexUs93Ityt5R1NyxXiKhh5pABhBQDPeBsqW3v9_-uirrj7FY1pibej1ilKzdfaU1QNufW7foGzy_7zsXyoKsvA</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Zhang, Bohan</creator><creator>Lu, Shaobo</creator><creator>Wu, Wenjuan</creator><creator>Li, Caixia</creator><creator>Lu, Jiafeng</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4279-4155</orcidid></search><sort><creationdate>202107</creationdate><title>Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics</title><author>Zhang, Bohan ; Lu, Shaobo ; Wu, Wenjuan ; Li, Caixia ; Lu, Jiafeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-1b63cee5a6e2ce11fa1e78e24ea38b6339ec7bdbd1dddee40b162f1bfc963ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Automation &amp; Control Systems</topic><topic>Closed loop systems</topic><topic>Control stability</topic><topic>Electric vehicles</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Engineering, Multidisciplinary</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Feedback linearization</topic><topic>Game theory</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Physical Sciences</topic><topic>Robust control</topic><topic>Science &amp; Technology</topic><topic>Sliding mode control</topic><topic>Steering</topic><topic>Subsystems</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bohan</creatorcontrib><creatorcontrib>Lu, Shaobo</creatorcontrib><creatorcontrib>Wu, Wenjuan</creatorcontrib><creatorcontrib>Li, Caixia</creatorcontrib><creatorcontrib>Lu, Jiafeng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bohan</au><au>Lu, Shaobo</au><au>Wu, Wenjuan</au><au>Li, Caixia</au><au>Lu, Jiafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics</atitle><jtitle>Journal of the Franklin Institute</jtitle><stitle>J FRANKLIN I</stitle><date>2021-07</date><risdate>2021</risdate><volume>358</volume><issue>11</issue><spage>5883</spage><epage>5908</epage><pages>5883-5908</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>•The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theory is adopted to model the interaction among various control targets. A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2021.05.034</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4279-4155</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2021-07, Vol.358 (11), p.5883-5908
issn 0016-0032
1879-2693
0016-0032
language eng
recordid cdi_proquest_journals_2561103712
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Active control
Actuators
Automation & Control Systems
Closed loop systems
Control stability
Electric vehicles
Engineering
Engineering, Electrical & Electronic
Engineering, Multidisciplinary
Fault diagnosis
Fault tolerance
Feedback control
Feedback control systems
Feedback linearization
Game theory
Isomorphism
Mathematics
Mathematics, Interdisciplinary Applications
Physical Sciences
Robust control
Science & Technology
Sliding mode control
Steering
Subsystems
Technology
title Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20fault-tolerant%20control%20for%20four-wheel%20individually%20actuated%20electric%20vehicle%20considering%20driver%20steering%20characteristics&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Zhang,%20Bohan&rft.date=2021-07&rft.volume=358&rft.issue=11&rft.spage=5883&rft.epage=5908&rft.pages=5883-5908&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2021.05.034&rft_dat=%3Cproquest_elsev%3E2561103712%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561103712&rft_id=info:pmid/&rft_els_id=S001600322100329X&rfr_iscdi=true