Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics
•The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theo...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2021-07, Vol.358 (11), p.5883-5908 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5908 |
---|---|
container_issue | 11 |
container_start_page | 5883 |
container_title | Journal of the Franklin Institute |
container_volume | 358 |
creator | Zhang, Bohan Lu, Shaobo Wu, Wenjuan Li, Caixia Lu, Jiafeng |
description | •The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theory is adopted to model the interaction among various control targets.
A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types. |
doi_str_mv | 10.1016/j.jfranklin.2021.05.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2561103712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001600322100329X</els_id><sourcerecordid>2561103712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-1b63cee5a6e2ce11fa1e78e24ea38b6339ec7bdbd1dddee40b162f1bfc963ecf3</originalsourceid><addsrcrecordid>eNqNkU2LHCEQhiUkkMkmvyFCjqE7VTrTPXNchnzBQiAkZ7G1zNgxulF7lj3lr8ehl70mgkjh-5T6yNhrhB4Bh3dzP7us48_gYy9AYA-7HuT2Cdvgfjx0YjjIp2wDLdoBSPGcvShlbuWIABv252uallK500uoXU2BWq_KTYo1p8Bdym0uubs7EQXuo_Vnbxcdwj3Xpi66kuUUyNTsDT_TyZtAF7p4S9nHH9xmf6bMS6W1NiedG9mKUr0pL9kzp0OhVw_rFfv-4f2346fu5svHz8frm87IrawdToM0RDs9kDCE6DTSuCexJS33bU8eyIyTnSxaa4m2MOEgHE7OHAZJxskr9mbte5vT74VKVXN7VmxHKrEbEEGOKFpqXFMmp1IyOXWb_S-d7xWCuthWs3q0rS62FexUs93Ityt5R1NyxXiKhh5pABhBQDPeBsqW3v9_-uirrj7FY1pibej1ilKzdfaU1QNufW7foGzy_7zsXyoKsvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561103712</pqid></control><display><type>article</type><title>Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Bohan ; Lu, Shaobo ; Wu, Wenjuan ; Li, Caixia ; Lu, Jiafeng</creator><creatorcontrib>Zhang, Bohan ; Lu, Shaobo ; Wu, Wenjuan ; Li, Caixia ; Lu, Jiafeng</creatorcontrib><description>•The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theory is adopted to model the interaction among various control targets.
A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2021.05.034</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Active control ; Actuators ; Automation & Control Systems ; Closed loop systems ; Control stability ; Electric vehicles ; Engineering ; Engineering, Electrical & Electronic ; Engineering, Multidisciplinary ; Fault diagnosis ; Fault tolerance ; Feedback control ; Feedback control systems ; Feedback linearization ; Game theory ; Isomorphism ; Mathematics ; Mathematics, Interdisciplinary Applications ; Physical Sciences ; Robust control ; Science & Technology ; Sliding mode control ; Steering ; Subsystems ; Technology</subject><ispartof>Journal of the Franklin Institute, 2021-07, Vol.358 (11), p.5883-5908</ispartof><rights>2021 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000702010000013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c343t-1b63cee5a6e2ce11fa1e78e24ea38b6339ec7bdbd1dddee40b162f1bfc963ecf3</citedby><cites>FETCH-LOGICAL-c343t-1b63cee5a6e2ce11fa1e78e24ea38b6339ec7bdbd1dddee40b162f1bfc963ecf3</cites><orcidid>0000-0003-4279-4155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2021.05.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Zhang, Bohan</creatorcontrib><creatorcontrib>Lu, Shaobo</creatorcontrib><creatorcontrib>Wu, Wenjuan</creatorcontrib><creatorcontrib>Li, Caixia</creatorcontrib><creatorcontrib>Lu, Jiafeng</creatorcontrib><title>Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics</title><title>Journal of the Franklin Institute</title><addtitle>J FRANKLIN I</addtitle><description>•The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theory is adopted to model the interaction among various control targets.
A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types.</description><subject>Active control</subject><subject>Actuators</subject><subject>Automation & Control Systems</subject><subject>Closed loop systems</subject><subject>Control stability</subject><subject>Electric vehicles</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Engineering, Multidisciplinary</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Feedback linearization</subject><subject>Game theory</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Physical Sciences</subject><subject>Robust control</subject><subject>Science & Technology</subject><subject>Sliding mode control</subject><subject>Steering</subject><subject>Subsystems</subject><subject>Technology</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU2LHCEQhiUkkMkmvyFCjqE7VTrTPXNchnzBQiAkZ7G1zNgxulF7lj3lr8ehl70mgkjh-5T6yNhrhB4Bh3dzP7us48_gYy9AYA-7HuT2Cdvgfjx0YjjIp2wDLdoBSPGcvShlbuWIABv252uallK500uoXU2BWq_KTYo1p8Bdym0uubs7EQXuo_Vnbxcdwj3Xpi66kuUUyNTsDT_TyZtAF7p4S9nHH9xmf6bMS6W1NiedG9mKUr0pL9kzp0OhVw_rFfv-4f2346fu5svHz8frm87IrawdToM0RDs9kDCE6DTSuCexJS33bU8eyIyTnSxaa4m2MOEgHE7OHAZJxskr9mbte5vT74VKVXN7VmxHKrEbEEGOKFpqXFMmp1IyOXWb_S-d7xWCuthWs3q0rS62FexUs93Ityt5R1NyxXiKhh5pABhBQDPeBsqW3v9_-uirrj7FY1pibej1ilKzdfaU1QNufW7foGzy_7zsXyoKsvA</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Zhang, Bohan</creator><creator>Lu, Shaobo</creator><creator>Wu, Wenjuan</creator><creator>Li, Caixia</creator><creator>Lu, Jiafeng</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4279-4155</orcidid></search><sort><creationdate>202107</creationdate><title>Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics</title><author>Zhang, Bohan ; Lu, Shaobo ; Wu, Wenjuan ; Li, Caixia ; Lu, Jiafeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-1b63cee5a6e2ce11fa1e78e24ea38b6339ec7bdbd1dddee40b162f1bfc963ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Automation & Control Systems</topic><topic>Closed loop systems</topic><topic>Control stability</topic><topic>Electric vehicles</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Engineering, Multidisciplinary</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Feedback linearization</topic><topic>Game theory</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Physical Sciences</topic><topic>Robust control</topic><topic>Science & Technology</topic><topic>Sliding mode control</topic><topic>Steering</topic><topic>Subsystems</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bohan</creatorcontrib><creatorcontrib>Lu, Shaobo</creatorcontrib><creatorcontrib>Wu, Wenjuan</creatorcontrib><creatorcontrib>Li, Caixia</creatorcontrib><creatorcontrib>Lu, Jiafeng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bohan</au><au>Lu, Shaobo</au><au>Wu, Wenjuan</au><au>Li, Caixia</au><au>Lu, Jiafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics</atitle><jtitle>Journal of the Franklin Institute</jtitle><stitle>J FRANKLIN I</stitle><date>2021-07</date><risdate>2021</risdate><volume>358</volume><issue>11</issue><spage>5883</spage><epage>5908</epage><pages>5883-5908</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>•The steering characteristics of the driver are considered in the fault-tolerant control.•The feedback linearization is used to deal with the nonlinearity of the driver-vehicle system.•Integrating feedback linearization and terminal sliding mode control improves robustness.•The cooperative game theory is adopted to model the interaction among various control targets.
A robust fault-tolerant control scheme for distributed actuated electric vehicles is proposed to maintain vehicle stability suffering actuator faults while considering the driver personality differences. The proposed scheme integrates the cooperative game and terminal sliding mode control into the framework of the feedback linearization method (FLM). Firstly, the nonlinearities of the driver-vehicle system are treated by the knowledge of Lie derivative, and then a set of controllable virtual subsystems is obtained through diffeomorphism. To achieve multi-objective cooperation, the interaction framework of virtual subsystems is modeled based on cooperative game theory, which provides a basic feedback control scheme (BFCS). Finally, a terminal sliding mode technology-based active compensation control scheme is integrated into BFCS to handle the systemic disturbances caused by actuator faults. An implementation of hardware-in-the-loop verifies that the stability of the vehicle under the control of the developed approach can be guaranteed for different drivers and different fault types.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2021.05.034</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-4279-4155</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2021-07, Vol.358 (11), p.5883-5908 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_2561103712 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Active control Actuators Automation & Control Systems Closed loop systems Control stability Electric vehicles Engineering Engineering, Electrical & Electronic Engineering, Multidisciplinary Fault diagnosis Fault tolerance Feedback control Feedback control systems Feedback linearization Game theory Isomorphism Mathematics Mathematics, Interdisciplinary Applications Physical Sciences Robust control Science & Technology Sliding mode control Steering Subsystems Technology |
title | Robust fault-tolerant control for four-wheel individually actuated electric vehicle considering driver steering characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20fault-tolerant%20control%20for%20four-wheel%20individually%20actuated%20electric%20vehicle%20considering%20driver%20steering%20characteristics&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Zhang,%20Bohan&rft.date=2021-07&rft.volume=358&rft.issue=11&rft.spage=5883&rft.epage=5908&rft.pages=5883-5908&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2021.05.034&rft_dat=%3Cproquest_elsev%3E2561103712%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561103712&rft_id=info:pmid/&rft_els_id=S001600322100329X&rfr_iscdi=true |