Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation

There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2021-08, Vol.60 (8), p.2723-2732
Hauptverfasser: Dong, Yumin, Liu, Zhixin, Zhang, Jinlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2732
container_issue 8
container_start_page 2723
container_title International journal of theoretical physics
container_volume 60
creator Dong, Yumin
Liu, Zhixin
Zhang, Jinlei
description There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A special case of graph structure destroyed is given. We present a search algorithm to find exceptional vertexes in the graph in this case. The algorithm uses the trick of amplitude amplification in quantum search algorithm. In the corresponding classical algorithm, the adjacency matrix may be used to store the information of vertex and edge of graph. It takes one time for the best and N times for the worst to find the target. Which means that N /2 times on average need to be conducted. In our quantum algorithm, nodes and vertexes are stored in quantum states, using quantum search to design algorithm. The search process can be accelerated in our quantum algorithm.
doi_str_mv 10.1007/s10773-021-04861-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561092317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561092317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-67378d9f486d1833a82240881ed5ea19d3bc347a9670c9a136818ed8df459a363</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKsv4CrgOvolmZkky1KqFgri7zakM9-0U-bPJAP17Z1awZ2ruzn3cjmEXHO45QDqLnBQSjIQnEGiM86yEzLhqRLMpCo9JRMAAUypRJ-TixB2AGBGcELWz4Nr49DQV3Q-39JZvel8FbcNLTtPF_sc-1h1ravpB_qIewy0aukLbobaefrgXb8N1LUFrWKg88rnQxXpsulrbLCN7tC9JGelqwNe_eaUvN8v3uaPbPX0sJzPViwXCiLLlFS6MOV4v-BaSqeFSEBrjkWKjptCrnOZKGcyBblxXGaaayx0USapcTKTU3Jz3O199zlgiHbXDX68HqxIMw5GSK5GShyp3HcheCxt76vG-S_LwR5c2qNLO7q0Py7tYVoeS2GE2w36v-l_Wt9A23bf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561092317</pqid></control><display><type>article</type><title>Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Yumin ; Liu, Zhixin ; Zhang, Jinlei</creator><creatorcontrib>Dong, Yumin ; Liu, Zhixin ; Zhang, Jinlei</creatorcontrib><description>There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A special case of graph structure destroyed is given. We present a search algorithm to find exceptional vertexes in the graph in this case. The algorithm uses the trick of amplitude amplification in quantum search algorithm. In the corresponding classical algorithm, the adjacency matrix may be used to store the information of vertex and edge of graph. It takes one time for the best and N times for the worst to find the target. Which means that N /2 times on average need to be conducted. In our quantum algorithm, nodes and vertexes are stored in quantum states, using quantum search to design algorithm. The search process can be accelerated in our quantum algorithm.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-021-04861-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuits ; Elementary Particles ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Search algorithms ; Search process ; Theoretical</subject><ispartof>International journal of theoretical physics, 2021-08, Vol.60 (8), p.2723-2732</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-67378d9f486d1833a82240881ed5ea19d3bc347a9670c9a136818ed8df459a363</cites><orcidid>0000-0002-4857-325X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-021-04861-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-021-04861-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dong, Yumin</creatorcontrib><creatorcontrib>Liu, Zhixin</creatorcontrib><creatorcontrib>Zhang, Jinlei</creatorcontrib><title>Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A special case of graph structure destroyed is given. We present a search algorithm to find exceptional vertexes in the graph in this case. The algorithm uses the trick of amplitude amplification in quantum search algorithm. In the corresponding classical algorithm, the adjacency matrix may be used to store the information of vertex and edge of graph. It takes one time for the best and N times for the worst to find the target. Which means that N /2 times on average need to be conducted. In our quantum algorithm, nodes and vertexes are stored in quantum states, using quantum search to design algorithm. The search process can be accelerated in our quantum algorithm.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Search algorithms</subject><subject>Search process</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKsv4CrgOvolmZkky1KqFgri7zakM9-0U-bPJAP17Z1awZ2ruzn3cjmEXHO45QDqLnBQSjIQnEGiM86yEzLhqRLMpCo9JRMAAUypRJ-TixB2AGBGcELWz4Nr49DQV3Q-39JZvel8FbcNLTtPF_sc-1h1ravpB_qIewy0aukLbobaefrgXb8N1LUFrWKg88rnQxXpsulrbLCN7tC9JGelqwNe_eaUvN8v3uaPbPX0sJzPViwXCiLLlFS6MOV4v-BaSqeFSEBrjkWKjptCrnOZKGcyBblxXGaaayx0USapcTKTU3Jz3O199zlgiHbXDX68HqxIMw5GSK5GShyp3HcheCxt76vG-S_LwR5c2qNLO7q0Py7tYVoeS2GE2w36v-l_Wt9A23bf</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Dong, Yumin</creator><creator>Liu, Zhixin</creator><creator>Zhang, Jinlei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4857-325X</orcidid></search><sort><creationdate>20210801</creationdate><title>Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation</title><author>Dong, Yumin ; Liu, Zhixin ; Zhang, Jinlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-67378d9f486d1833a82240881ed5ea19d3bc347a9670c9a136818ed8df459a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Search algorithms</topic><topic>Search process</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yumin</creatorcontrib><creatorcontrib>Liu, Zhixin</creatorcontrib><creatorcontrib>Zhang, Jinlei</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yumin</au><au>Liu, Zhixin</au><au>Zhang, Jinlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>60</volume><issue>8</issue><spage>2723</spage><epage>2732</epage><pages>2723-2732</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A special case of graph structure destroyed is given. We present a search algorithm to find exceptional vertexes in the graph in this case. The algorithm uses the trick of amplitude amplification in quantum search algorithm. In the corresponding classical algorithm, the adjacency matrix may be used to store the information of vertex and edge of graph. It takes one time for the best and N times for the worst to find the target. Which means that N /2 times on average need to be conducted. In our quantum algorithm, nodes and vertexes are stored in quantum states, using quantum search to design algorithm. The search process can be accelerated in our quantum algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-021-04861-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4857-325X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2021-08, Vol.60 (8), p.2723-2732
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2561092317
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Circuits
Elementary Particles
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum computers
Quantum computing
Quantum entanglement
Quantum Field Theory
Quantum mechanics
Quantum Physics
Search algorithms
Search process
Theoretical
title Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Search%20Algorithm%20for%20Exceptional%20Vertexes%20in%20Regular%20Graphs%20and%20its%20Circuit%20Implementation&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Dong,%20Yumin&rft.date=2021-08-01&rft.volume=60&rft.issue=8&rft.spage=2723&rft.epage=2732&rft.pages=2723-2732&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-021-04861-6&rft_dat=%3Cproquest_cross%3E2561092317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561092317&rft_id=info:pmid/&rfr_iscdi=true