Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation
There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A s...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2021-08, Vol.60 (8), p.2723-2732 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2732 |
---|---|
container_issue | 8 |
container_start_page | 2723 |
container_title | International journal of theoretical physics |
container_volume | 60 |
creator | Dong, Yumin Liu, Zhixin Zhang, Jinlei |
description | There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A special case of graph structure destroyed is given. We present a search algorithm to find exceptional vertexes in the graph in this case. The algorithm uses the trick of amplitude amplification in quantum search algorithm. In the corresponding classical algorithm, the adjacency matrix may be used to store the information of vertex and edge of graph. It takes one time for the best and
N
times for the worst to find the target. Which means that
N
/2 times on average need to be conducted. In our quantum algorithm, nodes and vertexes are stored in quantum states, using quantum search to design algorithm. The search process can be accelerated in our quantum algorithm. |
doi_str_mv | 10.1007/s10773-021-04861-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561092317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561092317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-67378d9f486d1833a82240881ed5ea19d3bc347a9670c9a136818ed8df459a363</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKsv4CrgOvolmZkky1KqFgri7zakM9-0U-bPJAP17Z1awZ2ruzn3cjmEXHO45QDqLnBQSjIQnEGiM86yEzLhqRLMpCo9JRMAAUypRJ-TixB2AGBGcELWz4Nr49DQV3Q-39JZvel8FbcNLTtPF_sc-1h1ravpB_qIewy0aukLbobaefrgXb8N1LUFrWKg88rnQxXpsulrbLCN7tC9JGelqwNe_eaUvN8v3uaPbPX0sJzPViwXCiLLlFS6MOV4v-BaSqeFSEBrjkWKjptCrnOZKGcyBblxXGaaayx0USapcTKTU3Jz3O199zlgiHbXDX68HqxIMw5GSK5GShyp3HcheCxt76vG-S_LwR5c2qNLO7q0Py7tYVoeS2GE2w36v-l_Wt9A23bf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561092317</pqid></control><display><type>article</type><title>Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Yumin ; Liu, Zhixin ; Zhang, Jinlei</creator><creatorcontrib>Dong, Yumin ; Liu, Zhixin ; Zhang, Jinlei</creatorcontrib><description>There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A special case of graph structure destroyed is given. We present a search algorithm to find exceptional vertexes in the graph in this case. The algorithm uses the trick of amplitude amplification in quantum search algorithm. In the corresponding classical algorithm, the adjacency matrix may be used to store the information of vertex and edge of graph. It takes one time for the best and
N
times for the worst to find the target. Which means that
N
/2 times on average need to be conducted. In our quantum algorithm, nodes and vertexes are stored in quantum states, using quantum search to design algorithm. The search process can be accelerated in our quantum algorithm.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-021-04861-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuits ; Elementary Particles ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Search algorithms ; Search process ; Theoretical</subject><ispartof>International journal of theoretical physics, 2021-08, Vol.60 (8), p.2723-2732</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-67378d9f486d1833a82240881ed5ea19d3bc347a9670c9a136818ed8df459a363</cites><orcidid>0000-0002-4857-325X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-021-04861-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-021-04861-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dong, Yumin</creatorcontrib><creatorcontrib>Liu, Zhixin</creatorcontrib><creatorcontrib>Zhang, Jinlei</creatorcontrib><title>Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A special case of graph structure destroyed is given. We present a search algorithm to find exceptional vertexes in the graph in this case. The algorithm uses the trick of amplitude amplification in quantum search algorithm. In the corresponding classical algorithm, the adjacency matrix may be used to store the information of vertex and edge of graph. It takes one time for the best and
N
times for the worst to find the target. Which means that
N
/2 times on average need to be conducted. In our quantum algorithm, nodes and vertexes are stored in quantum states, using quantum search to design algorithm. The search process can be accelerated in our quantum algorithm.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Search algorithms</subject><subject>Search process</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKsv4CrgOvolmZkky1KqFgri7zakM9-0U-bPJAP17Z1awZ2ruzn3cjmEXHO45QDqLnBQSjIQnEGiM86yEzLhqRLMpCo9JRMAAUypRJ-TixB2AGBGcELWz4Nr49DQV3Q-39JZvel8FbcNLTtPF_sc-1h1ravpB_qIewy0aukLbobaefrgXb8N1LUFrWKg88rnQxXpsulrbLCN7tC9JGelqwNe_eaUvN8v3uaPbPX0sJzPViwXCiLLlFS6MOV4v-BaSqeFSEBrjkWKjptCrnOZKGcyBblxXGaaayx0USapcTKTU3Jz3O199zlgiHbXDX68HqxIMw5GSK5GShyp3HcheCxt76vG-S_LwR5c2qNLO7q0Py7tYVoeS2GE2w36v-l_Wt9A23bf</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Dong, Yumin</creator><creator>Liu, Zhixin</creator><creator>Zhang, Jinlei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4857-325X</orcidid></search><sort><creationdate>20210801</creationdate><title>Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation</title><author>Dong, Yumin ; Liu, Zhixin ; Zhang, Jinlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-67378d9f486d1833a82240881ed5ea19d3bc347a9670c9a136818ed8df459a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Search algorithms</topic><topic>Search process</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yumin</creatorcontrib><creatorcontrib>Liu, Zhixin</creatorcontrib><creatorcontrib>Zhang, Jinlei</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yumin</au><au>Liu, Zhixin</au><au>Zhang, Jinlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>60</volume><issue>8</issue><spage>2723</spage><epage>2732</epage><pages>2723-2732</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>There are some interesting properties in quantum mechanics, such as quantum superposition and entanglement. We can use these features to solve some specific problems. Quantum computer has more advantages than classical computer in many problems. In this paper, we are interested in regular graph. A special case of graph structure destroyed is given. We present a search algorithm to find exceptional vertexes in the graph in this case. The algorithm uses the trick of amplitude amplification in quantum search algorithm. In the corresponding classical algorithm, the adjacency matrix may be used to store the information of vertex and edge of graph. It takes one time for the best and
N
times for the worst to find the target. Which means that
N
/2 times on average need to be conducted. In our quantum algorithm, nodes and vertexes are stored in quantum states, using quantum search to design algorithm. The search process can be accelerated in our quantum algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-021-04861-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4857-325X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | International journal of theoretical physics, 2021-08, Vol.60 (8), p.2723-2732 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_proquest_journals_2561092317 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Circuits Elementary Particles Mathematical and Computational Physics Physics Physics and Astronomy Quantum computers Quantum computing Quantum entanglement Quantum Field Theory Quantum mechanics Quantum Physics Search algorithms Search process Theoretical |
title | Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Search%20Algorithm%20for%20Exceptional%20Vertexes%20in%20Regular%20Graphs%20and%20its%20Circuit%20Implementation&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Dong,%20Yumin&rft.date=2021-08-01&rft.volume=60&rft.issue=8&rft.spage=2723&rft.epage=2732&rft.pages=2723-2732&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-021-04861-6&rft_dat=%3Cproquest_cross%3E2561092317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561092317&rft_id=info:pmid/&rfr_iscdi=true |