Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine

Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2019-09, Vol.531 (1), p.12029
Hauptverfasser: Ren, C L, Zhao, R G, Liu, Y F, Ji, N, Deng, L Y, Li, X M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12029
container_title IOP conference series. Materials Science and Engineering
container_volume 531
creator Ren, C L
Zhao, R G
Liu, Y F
Ji, N
Deng, L Y
Li, X M
description Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of fatigue lifetime of GH4133B superalloy under different stress ratios or alternatively at various maximum stress levels, the nonlinear regression analysis method is applied to identify the material parameters in the fatigue lifetime equation, and a 3D Nf-σm-σa curve surface is plotted. The comparison between theoretic fatigue lifetime Nfp and test one Nft indicates that the fatigue lifetime equation derived from the microstructure evolution of metallic materials can accurately predict the fatigue lifetime of GH4133B superalloy under different cyclic loading parameters. Finally, a parameter γ is introduced to characterize the effect of mean stress σm and stress amplitude σa on fatigue lifetime Nf of GH4133B superalloy. It is suggested that the effect of mean stress σm on Nf is larger than that of stress amplitude σa on Nf under the condition of tensile-tensile fatigue loading.
doi_str_mv 10.1088/1757-899X/531/1/012029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561051939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561051939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2369-60b429baa894b93ad685920fc38116b70aab2d2dd6db7e744051fa33f9bdbe703</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwF1AkzqX5aNPmOCbYkCZxAYlblCxOl9G1JWkP-_e0GhpHTrbs57XkB6F7Sh4pKcuUFnmRlFJ-pjmnKU0JZYTJCzQ7Ly7PfUmv0U2Me0JEkWVkhqpFo-tj9BG3Du98tcM9HDoIuh8CYKd7Xw2Aa--g9weYoNU6o5w_4ThMWF23RzxEsNg3eMwY3wC2Pn5NqIbQJtBU4-wWXTldR7j7rXP08fL8vlwnm7fV63KxSbaMC5kIYjImjdalzIzk2ooyl4y4LS8pFaYgWhtmmbXCmgKmF3LqNOdOGmugIHyOHk53u9B-DxB7tW-HMP4YFcsFHXHJ5UiJE7UNbYwBnOqCP-hwVJSoSaqafKnJnRqlKqpOUscgOwV92_1d_if0A2WNeWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561051939</pqid></control><display><type>article</type><title>Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ren, C L ; Zhao, R G ; Liu, Y F ; Ji, N ; Deng, L Y ; Li, X M</creator><creatorcontrib>Ren, C L ; Zhao, R G ; Liu, Y F ; Ji, N ; Deng, L Y ; Li, X M</creatorcontrib><description>Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of fatigue lifetime of GH4133B superalloy under different stress ratios or alternatively at various maximum stress levels, the nonlinear regression analysis method is applied to identify the material parameters in the fatigue lifetime equation, and a 3D Nf-σm-σa curve surface is plotted. The comparison between theoretic fatigue lifetime Nfp and test one Nft indicates that the fatigue lifetime equation derived from the microstructure evolution of metallic materials can accurately predict the fatigue lifetime of GH4133B superalloy under different cyclic loading parameters. Finally, a parameter γ is introduced to characterize the effect of mean stress σm and stress amplitude σa on fatigue lifetime Nf of GH4133B superalloy. It is suggested that the effect of mean stress σm on Nf is larger than that of stress amplitude σa on Nf under the condition of tensile-tensile fatigue loading.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/531/1/012029</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amplitudes ; Cyclic loads ; Fatigue tests ; High temperature ; Parameter identification ; Regression analysis ; Superalloys ; Thermal fatigue ; Turbine disks</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-09, Vol.531 (1), p.12029</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2369-60b429baa894b93ad685920fc38116b70aab2d2dd6db7e744051fa33f9bdbe703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/531/1/012029/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Ren, C L</creatorcontrib><creatorcontrib>Zhao, R G</creatorcontrib><creatorcontrib>Liu, Y F</creatorcontrib><creatorcontrib>Ji, N</creatorcontrib><creatorcontrib>Deng, L Y</creatorcontrib><creatorcontrib>Li, X M</creatorcontrib><title>Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of fatigue lifetime of GH4133B superalloy under different stress ratios or alternatively at various maximum stress levels, the nonlinear regression analysis method is applied to identify the material parameters in the fatigue lifetime equation, and a 3D Nf-σm-σa curve surface is plotted. The comparison between theoretic fatigue lifetime Nfp and test one Nft indicates that the fatigue lifetime equation derived from the microstructure evolution of metallic materials can accurately predict the fatigue lifetime of GH4133B superalloy under different cyclic loading parameters. Finally, a parameter γ is introduced to characterize the effect of mean stress σm and stress amplitude σa on fatigue lifetime Nf of GH4133B superalloy. It is suggested that the effect of mean stress σm on Nf is larger than that of stress amplitude σa on Nf under the condition of tensile-tensile fatigue loading.</description><subject>Amplitudes</subject><subject>Cyclic loads</subject><subject>Fatigue tests</subject><subject>High temperature</subject><subject>Parameter identification</subject><subject>Regression analysis</subject><subject>Superalloys</subject><subject>Thermal fatigue</subject><subject>Turbine disks</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1PwzAMhiMEEmPwF1AkzqX5aNPmOCbYkCZxAYlblCxOl9G1JWkP-_e0GhpHTrbs57XkB6F7Sh4pKcuUFnmRlFJ-pjmnKU0JZYTJCzQ7Ly7PfUmv0U2Me0JEkWVkhqpFo-tj9BG3Du98tcM9HDoIuh8CYKd7Xw2Aa--g9weYoNU6o5w_4ThMWF23RzxEsNg3eMwY3wC2Pn5NqIbQJtBU4-wWXTldR7j7rXP08fL8vlwnm7fV63KxSbaMC5kIYjImjdalzIzk2ooyl4y4LS8pFaYgWhtmmbXCmgKmF3LqNOdOGmugIHyOHk53u9B-DxB7tW-HMP4YFcsFHXHJ5UiJE7UNbYwBnOqCP-hwVJSoSaqafKnJnRqlKqpOUscgOwV92_1d_if0A2WNeWM</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Ren, C L</creator><creator>Zhao, R G</creator><creator>Liu, Y F</creator><creator>Ji, N</creator><creator>Deng, L Y</creator><creator>Li, X M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190901</creationdate><title>Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine</title><author>Ren, C L ; Zhao, R G ; Liu, Y F ; Ji, N ; Deng, L Y ; Li, X M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2369-60b429baa894b93ad685920fc38116b70aab2d2dd6db7e744051fa33f9bdbe703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Cyclic loads</topic><topic>Fatigue tests</topic><topic>High temperature</topic><topic>Parameter identification</topic><topic>Regression analysis</topic><topic>Superalloys</topic><topic>Thermal fatigue</topic><topic>Turbine disks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, C L</creatorcontrib><creatorcontrib>Zhao, R G</creatorcontrib><creatorcontrib>Liu, Y F</creatorcontrib><creatorcontrib>Ji, N</creatorcontrib><creatorcontrib>Deng, L Y</creatorcontrib><creatorcontrib>Li, X M</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, C L</au><au>Zhao, R G</au><au>Liu, Y F</au><au>Ji, N</au><au>Deng, L Y</au><au>Li, X M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>531</volume><issue>1</issue><spage>12029</spage><pages>12029-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of fatigue lifetime of GH4133B superalloy under different stress ratios or alternatively at various maximum stress levels, the nonlinear regression analysis method is applied to identify the material parameters in the fatigue lifetime equation, and a 3D Nf-σm-σa curve surface is plotted. The comparison between theoretic fatigue lifetime Nfp and test one Nft indicates that the fatigue lifetime equation derived from the microstructure evolution of metallic materials can accurately predict the fatigue lifetime of GH4133B superalloy under different cyclic loading parameters. Finally, a parameter γ is introduced to characterize the effect of mean stress σm and stress amplitude σa on fatigue lifetime Nf of GH4133B superalloy. It is suggested that the effect of mean stress σm on Nf is larger than that of stress amplitude σa on Nf under the condition of tensile-tensile fatigue loading.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/531/1/012029</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2019-09, Vol.531 (1), p.12029
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2561051939
source Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Amplitudes
Cyclic loads
Fatigue tests
High temperature
Parameter identification
Regression analysis
Superalloys
Thermal fatigue
Turbine disks
title Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20high%20temperature%20fatigue%20lifetime%20of%20GH4133B%20superalloy%20used%20in%20turbine%20disk%20of%20aero-engine&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Ren,%20C%20L&rft.date=2019-09-01&rft.volume=531&rft.issue=1&rft.spage=12029&rft.pages=12029-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/531/1/012029&rft_dat=%3Cproquest_cross%3E2561051939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561051939&rft_id=info:pmid/&rfr_iscdi=true