Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine
Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2019-09, Vol.531 (1), p.12029 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12029 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 531 |
creator | Ren, C L Zhao, R G Liu, Y F Ji, N Deng, L Y Li, X M |
description | Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of fatigue lifetime of GH4133B superalloy under different stress ratios or alternatively at various maximum stress levels, the nonlinear regression analysis method is applied to identify the material parameters in the fatigue lifetime equation, and a 3D Nf-σm-σa curve surface is plotted. The comparison between theoretic fatigue lifetime Nfp and test one Nft indicates that the fatigue lifetime equation derived from the microstructure evolution of metallic materials can accurately predict the fatigue lifetime of GH4133B superalloy under different cyclic loading parameters. Finally, a parameter γ is introduced to characterize the effect of mean stress σm and stress amplitude σa on fatigue lifetime Nf of GH4133B superalloy. It is suggested that the effect of mean stress σm on Nf is larger than that of stress amplitude σa on Nf under the condition of tensile-tensile fatigue loading. |
doi_str_mv | 10.1088/1757-899X/531/1/012029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561051939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561051939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2369-60b429baa894b93ad685920fc38116b70aab2d2dd6db7e744051fa33f9bdbe703</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwF1AkzqX5aNPmOCbYkCZxAYlblCxOl9G1JWkP-_e0GhpHTrbs57XkB6F7Sh4pKcuUFnmRlFJ-pjmnKU0JZYTJCzQ7Ly7PfUmv0U2Me0JEkWVkhqpFo-tj9BG3Du98tcM9HDoIuh8CYKd7Xw2Aa--g9weYoNU6o5w_4ThMWF23RzxEsNg3eMwY3wC2Pn5NqIbQJtBU4-wWXTldR7j7rXP08fL8vlwnm7fV63KxSbaMC5kIYjImjdalzIzk2ooyl4y4LS8pFaYgWhtmmbXCmgKmF3LqNOdOGmugIHyOHk53u9B-DxB7tW-HMP4YFcsFHXHJ5UiJE7UNbYwBnOqCP-hwVJSoSaqafKnJnRqlKqpOUscgOwV92_1d_if0A2WNeWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561051939</pqid></control><display><type>article</type><title>Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ren, C L ; Zhao, R G ; Liu, Y F ; Ji, N ; Deng, L Y ; Li, X M</creator><creatorcontrib>Ren, C L ; Zhao, R G ; Liu, Y F ; Ji, N ; Deng, L Y ; Li, X M</creatorcontrib><description>Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of fatigue lifetime of GH4133B superalloy under different stress ratios or alternatively at various maximum stress levels, the nonlinear regression analysis method is applied to identify the material parameters in the fatigue lifetime equation, and a 3D Nf-σm-σa curve surface is plotted. The comparison between theoretic fatigue lifetime Nfp and test one Nft indicates that the fatigue lifetime equation derived from the microstructure evolution of metallic materials can accurately predict the fatigue lifetime of GH4133B superalloy under different cyclic loading parameters. Finally, a parameter γ is introduced to characterize the effect of mean stress σm and stress amplitude σa on fatigue lifetime Nf of GH4133B superalloy. It is suggested that the effect of mean stress σm on Nf is larger than that of stress amplitude σa on Nf under the condition of tensile-tensile fatigue loading.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/531/1/012029</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amplitudes ; Cyclic loads ; Fatigue tests ; High temperature ; Parameter identification ; Regression analysis ; Superalloys ; Thermal fatigue ; Turbine disks</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-09, Vol.531 (1), p.12029</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2369-60b429baa894b93ad685920fc38116b70aab2d2dd6db7e744051fa33f9bdbe703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/531/1/012029/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Ren, C L</creatorcontrib><creatorcontrib>Zhao, R G</creatorcontrib><creatorcontrib>Liu, Y F</creatorcontrib><creatorcontrib>Ji, N</creatorcontrib><creatorcontrib>Deng, L Y</creatorcontrib><creatorcontrib>Li, X M</creatorcontrib><title>Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of fatigue lifetime of GH4133B superalloy under different stress ratios or alternatively at various maximum stress levels, the nonlinear regression analysis method is applied to identify the material parameters in the fatigue lifetime equation, and a 3D Nf-σm-σa curve surface is plotted. The comparison between theoretic fatigue lifetime Nfp and test one Nft indicates that the fatigue lifetime equation derived from the microstructure evolution of metallic materials can accurately predict the fatigue lifetime of GH4133B superalloy under different cyclic loading parameters. Finally, a parameter γ is introduced to characterize the effect of mean stress σm and stress amplitude σa on fatigue lifetime Nf of GH4133B superalloy. It is suggested that the effect of mean stress σm on Nf is larger than that of stress amplitude σa on Nf under the condition of tensile-tensile fatigue loading.</description><subject>Amplitudes</subject><subject>Cyclic loads</subject><subject>Fatigue tests</subject><subject>High temperature</subject><subject>Parameter identification</subject><subject>Regression analysis</subject><subject>Superalloys</subject><subject>Thermal fatigue</subject><subject>Turbine disks</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1PwzAMhiMEEmPwF1AkzqX5aNPmOCbYkCZxAYlblCxOl9G1JWkP-_e0GhpHTrbs57XkB6F7Sh4pKcuUFnmRlFJ-pjmnKU0JZYTJCzQ7Ly7PfUmv0U2Me0JEkWVkhqpFo-tj9BG3Du98tcM9HDoIuh8CYKd7Xw2Aa--g9weYoNU6o5w_4ThMWF23RzxEsNg3eMwY3wC2Pn5NqIbQJtBU4-wWXTldR7j7rXP08fL8vlwnm7fV63KxSbaMC5kIYjImjdalzIzk2ooyl4y4LS8pFaYgWhtmmbXCmgKmF3LqNOdOGmugIHyOHk53u9B-DxB7tW-HMP4YFcsFHXHJ5UiJE7UNbYwBnOqCP-hwVJSoSaqafKnJnRqlKqpOUscgOwV92_1d_if0A2WNeWM</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Ren, C L</creator><creator>Zhao, R G</creator><creator>Liu, Y F</creator><creator>Ji, N</creator><creator>Deng, L Y</creator><creator>Li, X M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190901</creationdate><title>Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine</title><author>Ren, C L ; Zhao, R G ; Liu, Y F ; Ji, N ; Deng, L Y ; Li, X M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2369-60b429baa894b93ad685920fc38116b70aab2d2dd6db7e744051fa33f9bdbe703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Cyclic loads</topic><topic>Fatigue tests</topic><topic>High temperature</topic><topic>Parameter identification</topic><topic>Regression analysis</topic><topic>Superalloys</topic><topic>Thermal fatigue</topic><topic>Turbine disks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, C L</creatorcontrib><creatorcontrib>Zhao, R G</creatorcontrib><creatorcontrib>Liu, Y F</creatorcontrib><creatorcontrib>Ji, N</creatorcontrib><creatorcontrib>Deng, L Y</creatorcontrib><creatorcontrib>Li, X M</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, C L</au><au>Zhao, R G</au><au>Liu, Y F</au><au>Ji, N</au><au>Deng, L Y</au><au>Li, X M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>531</volume><issue>1</issue><spage>12029</spage><pages>12029-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Based on the S-H cavity model theory and the thermodynamic diffusion equation, the high temperature fatigue lifetime equation is deduced, and the influence of stress amplitude and mean stress on fatigue lifetime is quantitatively analyzed. At high temperature of 650°C, according to the test data of fatigue lifetime of GH4133B superalloy under different stress ratios or alternatively at various maximum stress levels, the nonlinear regression analysis method is applied to identify the material parameters in the fatigue lifetime equation, and a 3D Nf-σm-σa curve surface is plotted. The comparison between theoretic fatigue lifetime Nfp and test one Nft indicates that the fatigue lifetime equation derived from the microstructure evolution of metallic materials can accurately predict the fatigue lifetime of GH4133B superalloy under different cyclic loading parameters. Finally, a parameter γ is introduced to characterize the effect of mean stress σm and stress amplitude σa on fatigue lifetime Nf of GH4133B superalloy. It is suggested that the effect of mean stress σm on Nf is larger than that of stress amplitude σa on Nf under the condition of tensile-tensile fatigue loading.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/531/1/012029</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2019-09, Vol.531 (1), p.12029 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2561051939 |
source | Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Amplitudes Cyclic loads Fatigue tests High temperature Parameter identification Regression analysis Superalloys Thermal fatigue Turbine disks |
title | Analysis of high temperature fatigue lifetime of GH4133B superalloy used in turbine disk of aero-engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20high%20temperature%20fatigue%20lifetime%20of%20GH4133B%20superalloy%20used%20in%20turbine%20disk%20of%20aero-engine&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Ren,%20C%20L&rft.date=2019-09-01&rft.volume=531&rft.issue=1&rft.spage=12029&rft.pages=12029-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/531/1/012029&rft_dat=%3Cproquest_cross%3E2561051939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561051939&rft_id=info:pmid/&rfr_iscdi=true |