Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method
Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively inve...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2019-05, Vol.529 (1), p.12007 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12007 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 529 |
creator | Hötzer, J. Kellner, M. Kunz, W. Nestler, B. |
description | Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively investigated. However the effect of changes in the solidification velocity on the resulting microstructure adjustment processes is still unclear. Therefore large-scale (3D+t) simulations of the ternary eutectic system Ag-Al-Cu with changing solidification velocities are conducted with a phase-field model based on the grand potential approach. To study the spatially complex rearrangement process during velocity changes in statistical representative volume elements, simulations with different velocity profiles are calculated in large-scale domains. The results show, that the evolving microstructure continuously rearranges by splitting and merging of the rods despite constant growth conditions. By increasing the velocity, the microstructure refines by splitting of the Al2Cu phase. Whereas by decreasing the velocity, the microstructure coarsens by overgrowing events of both intermetallic phases. |
doi_str_mv | 10.1088/1757-899X/529/1/012007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561047426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561047426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-702eb3fbd4cafeb974f54b91ff2eedc973f2846796f8108cda884b6c92b3bf323</originalsourceid><addsrcrecordid>eNqFkV9LwzAUxYsoOKdfQQK--FKXpGnTPo4xdTDxQQXfQpo_a0a31CRV9jn8wrarTATBp3u5-Z1DOCeKLhG8QTDPJ4imNM6L4nWS4mKCJhBhCOlRNDo8HB_2HJ1GZ96vIcwoIXAUfS6278oHs-LB2C2wGoRKgY0RzvrgWhFapwCX69aHjdoGUO7Au6qtMKFbuDN7mQeydWa72mulcUr0V14Db2sjjTbi4D6t4-kqnrXgw4RqzzcV9yrWRtUSbFSorDyPTjSvvbr4nuPo5Xb-PLuPl493i9l0GYskJSGmEKsy0aUkgmtVFpTolJQF0horJUVBE41zktEi03kXlJA8z0mZiQKXSakTnIyjq8G3cfat7VJga9u67t-e4TRDkFCCs47KBqqPxDulWePMhrsdQ5D1BbA-W9bnzLoCGGJDAZ3wehAa2_w4PzzNf2GskbpD8R_oP_5fPnqZjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561047426</pqid></control><display><type>article</type><title>Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Hötzer, J. ; Kellner, M. ; Kunz, W. ; Nestler, B.</creator><creatorcontrib>Hötzer, J. ; Kellner, M. ; Kunz, W. ; Nestler, B.</creatorcontrib><description>Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively investigated. However the effect of changes in the solidification velocity on the resulting microstructure adjustment processes is still unclear. Therefore large-scale (3D+t) simulations of the ternary eutectic system Ag-Al-Cu with changing solidification velocities are conducted with a phase-field model based on the grand potential approach. To study the spatially complex rearrangement process during velocity changes in statistical representative volume elements, simulations with different velocity profiles are calculated in large-scale domains. The results show, that the evolving microstructure continuously rearranges by splitting and merging of the rods despite constant growth conditions. By increasing the velocity, the microstructure refines by splitting of the Al2Cu phase. Whereas by decreasing the velocity, the microstructure coarsens by overgrowing events of both intermetallic phases.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/529/1/012007</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Copper ; Directional solidification ; Intermetallic phases ; Microstructure ; Silver ; Splitting ; Velocity ; Velocity distribution</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-05, Vol.529 (1), p.12007</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-702eb3fbd4cafeb974f54b91ff2eedc973f2846796f8108cda884b6c92b3bf323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/529/1/012007/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Hötzer, J.</creatorcontrib><creatorcontrib>Kellner, M.</creatorcontrib><creatorcontrib>Kunz, W.</creatorcontrib><creatorcontrib>Nestler, B.</creatorcontrib><title>Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively investigated. However the effect of changes in the solidification velocity on the resulting microstructure adjustment processes is still unclear. Therefore large-scale (3D+t) simulations of the ternary eutectic system Ag-Al-Cu with changing solidification velocities are conducted with a phase-field model based on the grand potential approach. To study the spatially complex rearrangement process during velocity changes in statistical representative volume elements, simulations with different velocity profiles are calculated in large-scale domains. The results show, that the evolving microstructure continuously rearranges by splitting and merging of the rods despite constant growth conditions. By increasing the velocity, the microstructure refines by splitting of the Al2Cu phase. Whereas by decreasing the velocity, the microstructure coarsens by overgrowing events of both intermetallic phases.</description><subject>Aluminum</subject><subject>Copper</subject><subject>Directional solidification</subject><subject>Intermetallic phases</subject><subject>Microstructure</subject><subject>Silver</subject><subject>Splitting</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkV9LwzAUxYsoOKdfQQK--FKXpGnTPo4xdTDxQQXfQpo_a0a31CRV9jn8wrarTATBp3u5-Z1DOCeKLhG8QTDPJ4imNM6L4nWS4mKCJhBhCOlRNDo8HB_2HJ1GZ96vIcwoIXAUfS6278oHs-LB2C2wGoRKgY0RzvrgWhFapwCX69aHjdoGUO7Au6qtMKFbuDN7mQeydWa72mulcUr0V14Db2sjjTbi4D6t4-kqnrXgw4RqzzcV9yrWRtUSbFSorDyPTjSvvbr4nuPo5Xb-PLuPl493i9l0GYskJSGmEKsy0aUkgmtVFpTolJQF0horJUVBE41zktEi03kXlJA8z0mZiQKXSakTnIyjq8G3cfat7VJga9u67t-e4TRDkFCCs47KBqqPxDulWePMhrsdQ5D1BbA-W9bnzLoCGGJDAZ3wehAa2_w4PzzNf2GskbpD8R_oP_5fPnqZjA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Hötzer, J.</creator><creator>Kellner, M.</creator><creator>Kunz, W.</creator><creator>Nestler, B.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190501</creationdate><title>Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method</title><author>Hötzer, J. ; Kellner, M. ; Kunz, W. ; Nestler, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-702eb3fbd4cafeb974f54b91ff2eedc973f2846796f8108cda884b6c92b3bf323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Copper</topic><topic>Directional solidification</topic><topic>Intermetallic phases</topic><topic>Microstructure</topic><topic>Silver</topic><topic>Splitting</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hötzer, J.</creatorcontrib><creatorcontrib>Kellner, M.</creatorcontrib><creatorcontrib>Kunz, W.</creatorcontrib><creatorcontrib>Nestler, B.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hötzer, J.</au><au>Kellner, M.</au><au>Kunz, W.</au><au>Nestler, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>529</volume><issue>1</issue><spage>12007</spage><pages>12007-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively investigated. However the effect of changes in the solidification velocity on the resulting microstructure adjustment processes is still unclear. Therefore large-scale (3D+t) simulations of the ternary eutectic system Ag-Al-Cu with changing solidification velocities are conducted with a phase-field model based on the grand potential approach. To study the spatially complex rearrangement process during velocity changes in statistical representative volume elements, simulations with different velocity profiles are calculated in large-scale domains. The results show, that the evolving microstructure continuously rearranges by splitting and merging of the rods despite constant growth conditions. By increasing the velocity, the microstructure refines by splitting of the Al2Cu phase. Whereas by decreasing the velocity, the microstructure coarsens by overgrowing events of both intermetallic phases.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/529/1/012007</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2019-05, Vol.529 (1), p.12007 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2561047426 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Aluminum Copper Directional solidification Intermetallic phases Microstructure Silver Splitting Velocity Velocity distribution |
title | Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20microstructure%20adjustment%20by%20velocity%20variations%20during%20the%20directional%20solidification%20of%20Al-Ag-Cu%20with%20the%20phase-field%20method&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=H%C3%B6tzer,%20J.&rft.date=2019-05-01&rft.volume=529&rft.issue=1&rft.spage=12007&rft.pages=12007-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/529/1/012007&rft_dat=%3Cproquest_cross%3E2561047426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561047426&rft_id=info:pmid/&rfr_iscdi=true |