Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method

Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2019-05, Vol.529 (1), p.12007
Hauptverfasser: Hötzer, J., Kellner, M., Kunz, W., Nestler, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12007
container_title IOP conference series. Materials Science and Engineering
container_volume 529
creator Hötzer, J.
Kellner, M.
Kunz, W.
Nestler, B.
description Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively investigated. However the effect of changes in the solidification velocity on the resulting microstructure adjustment processes is still unclear. Therefore large-scale (3D+t) simulations of the ternary eutectic system Ag-Al-Cu with changing solidification velocities are conducted with a phase-field model based on the grand potential approach. To study the spatially complex rearrangement process during velocity changes in statistical representative volume elements, simulations with different velocity profiles are calculated in large-scale domains. The results show, that the evolving microstructure continuously rearranges by splitting and merging of the rods despite constant growth conditions. By increasing the velocity, the microstructure refines by splitting of the Al2Cu phase. Whereas by decreasing the velocity, the microstructure coarsens by overgrowing events of both intermetallic phases.
doi_str_mv 10.1088/1757-899X/529/1/012007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561047426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561047426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-702eb3fbd4cafeb974f54b91ff2eedc973f2846796f8108cda884b6c92b3bf323</originalsourceid><addsrcrecordid>eNqFkV9LwzAUxYsoOKdfQQK--FKXpGnTPo4xdTDxQQXfQpo_a0a31CRV9jn8wrarTATBp3u5-Z1DOCeKLhG8QTDPJ4imNM6L4nWS4mKCJhBhCOlRNDo8HB_2HJ1GZ96vIcwoIXAUfS6278oHs-LB2C2wGoRKgY0RzvrgWhFapwCX69aHjdoGUO7Au6qtMKFbuDN7mQeydWa72mulcUr0V14Db2sjjTbi4D6t4-kqnrXgw4RqzzcV9yrWRtUSbFSorDyPTjSvvbr4nuPo5Xb-PLuPl493i9l0GYskJSGmEKsy0aUkgmtVFpTolJQF0horJUVBE41zktEi03kXlJA8z0mZiQKXSakTnIyjq8G3cfat7VJga9u67t-e4TRDkFCCs47KBqqPxDulWePMhrsdQ5D1BbA-W9bnzLoCGGJDAZ3wehAa2_w4PzzNf2GskbpD8R_oP_5fPnqZjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561047426</pqid></control><display><type>article</type><title>Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Hötzer, J. ; Kellner, M. ; Kunz, W. ; Nestler, B.</creator><creatorcontrib>Hötzer, J. ; Kellner, M. ; Kunz, W. ; Nestler, B.</creatorcontrib><description>Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively investigated. However the effect of changes in the solidification velocity on the resulting microstructure adjustment processes is still unclear. Therefore large-scale (3D+t) simulations of the ternary eutectic system Ag-Al-Cu with changing solidification velocities are conducted with a phase-field model based on the grand potential approach. To study the spatially complex rearrangement process during velocity changes in statistical representative volume elements, simulations with different velocity profiles are calculated in large-scale domains. The results show, that the evolving microstructure continuously rearranges by splitting and merging of the rods despite constant growth conditions. By increasing the velocity, the microstructure refines by splitting of the Al2Cu phase. Whereas by decreasing the velocity, the microstructure coarsens by overgrowing events of both intermetallic phases.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/529/1/012007</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Copper ; Directional solidification ; Intermetallic phases ; Microstructure ; Silver ; Splitting ; Velocity ; Velocity distribution</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-05, Vol.529 (1), p.12007</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-702eb3fbd4cafeb974f54b91ff2eedc973f2846796f8108cda884b6c92b3bf323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/529/1/012007/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Hötzer, J.</creatorcontrib><creatorcontrib>Kellner, M.</creatorcontrib><creatorcontrib>Kunz, W.</creatorcontrib><creatorcontrib>Nestler, B.</creatorcontrib><title>Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively investigated. However the effect of changes in the solidification velocity on the resulting microstructure adjustment processes is still unclear. Therefore large-scale (3D+t) simulations of the ternary eutectic system Ag-Al-Cu with changing solidification velocities are conducted with a phase-field model based on the grand potential approach. To study the spatially complex rearrangement process during velocity changes in statistical representative volume elements, simulations with different velocity profiles are calculated in large-scale domains. The results show, that the evolving microstructure continuously rearranges by splitting and merging of the rods despite constant growth conditions. By increasing the velocity, the microstructure refines by splitting of the Al2Cu phase. Whereas by decreasing the velocity, the microstructure coarsens by overgrowing events of both intermetallic phases.</description><subject>Aluminum</subject><subject>Copper</subject><subject>Directional solidification</subject><subject>Intermetallic phases</subject><subject>Microstructure</subject><subject>Silver</subject><subject>Splitting</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkV9LwzAUxYsoOKdfQQK--FKXpGnTPo4xdTDxQQXfQpo_a0a31CRV9jn8wrarTATBp3u5-Z1DOCeKLhG8QTDPJ4imNM6L4nWS4mKCJhBhCOlRNDo8HB_2HJ1GZ96vIcwoIXAUfS6278oHs-LB2C2wGoRKgY0RzvrgWhFapwCX69aHjdoGUO7Au6qtMKFbuDN7mQeydWa72mulcUr0V14Db2sjjTbi4D6t4-kqnrXgw4RqzzcV9yrWRtUSbFSorDyPTjSvvbr4nuPo5Xb-PLuPl493i9l0GYskJSGmEKsy0aUkgmtVFpTolJQF0horJUVBE41zktEi03kXlJA8z0mZiQKXSakTnIyjq8G3cfat7VJga9u67t-e4TRDkFCCs47KBqqPxDulWePMhrsdQ5D1BbA-W9bnzLoCGGJDAZ3wehAa2_w4PzzNf2GskbpD8R_oP_5fPnqZjA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Hötzer, J.</creator><creator>Kellner, M.</creator><creator>Kunz, W.</creator><creator>Nestler, B.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190501</creationdate><title>Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method</title><author>Hötzer, J. ; Kellner, M. ; Kunz, W. ; Nestler, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-702eb3fbd4cafeb974f54b91ff2eedc973f2846796f8108cda884b6c92b3bf323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Copper</topic><topic>Directional solidification</topic><topic>Intermetallic phases</topic><topic>Microstructure</topic><topic>Silver</topic><topic>Splitting</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hötzer, J.</creatorcontrib><creatorcontrib>Kellner, M.</creatorcontrib><creatorcontrib>Kunz, W.</creatorcontrib><creatorcontrib>Nestler, B.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hötzer, J.</au><au>Kellner, M.</au><au>Kunz, W.</au><au>Nestler, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>529</volume><issue>1</issue><spage>12007</spage><pages>12007-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Directional solidification is a favored process to manufacture homogeneous microstructures which lead to macroscopically unique properties for a material. The dependence of the spacing and type of the arising microstructure from the solidification velocity for constant velocities is extensively investigated. However the effect of changes in the solidification velocity on the resulting microstructure adjustment processes is still unclear. Therefore large-scale (3D+t) simulations of the ternary eutectic system Ag-Al-Cu with changing solidification velocities are conducted with a phase-field model based on the grand potential approach. To study the spatially complex rearrangement process during velocity changes in statistical representative volume elements, simulations with different velocity profiles are calculated in large-scale domains. The results show, that the evolving microstructure continuously rearranges by splitting and merging of the rods despite constant growth conditions. By increasing the velocity, the microstructure refines by splitting of the Al2Cu phase. Whereas by decreasing the velocity, the microstructure coarsens by overgrowing events of both intermetallic phases.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/529/1/012007</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2019-05, Vol.529 (1), p.12007
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2561047426
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Aluminum
Copper
Directional solidification
Intermetallic phases
Microstructure
Silver
Splitting
Velocity
Velocity distribution
title Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20microstructure%20adjustment%20by%20velocity%20variations%20during%20the%20directional%20solidification%20of%20Al-Ag-Cu%20with%20the%20phase-field%20method&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=H%C3%B6tzer,%20J.&rft.date=2019-05-01&rft.volume=529&rft.issue=1&rft.spage=12007&rft.pages=12007-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/529/1/012007&rft_dat=%3Cproquest_cross%3E2561047426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561047426&rft_id=info:pmid/&rfr_iscdi=true