Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application
Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocataly...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2019-04, Vol.509 (1), p.12144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12144 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 509 |
creator | Elysabeth, Tiur Slamet Sri Redjeki, Athiek |
description | Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocatalytic process. Nitrogen doped titania nanotube arrays (N-TNTAs) was synthesized by a one-step electrochemical anodization method at 50 V for 2 hour, in the electrolyte solution containing water, ammonium fluoride, glycerol and specified amounts of urea as nitrogen precursor followed by annealing at 500°C for 3 h to induce crystallization. Amount of urea (0.1, 0.2 and 0.4 wt%) in electrolyte solution and annealing atmosphere (air and N2) were varied to enhance visible light photo response. SEM analysis showed that TNTAs and N-TNTAs were successfully synthesized with diameters of 64-320 nm but the morphologies did not show a significant difference. The XRD results showed an identical pattern dominated by the anatase phase. The size of N-TNTAs crystallite is larger than the undoped TNTAs. UV-DRS analysis showed that N-TNTAs have smaller bandgap energy. The smallest bandgap energy was obtained 2.84 eV from N-TNTAs using 0.2% urea with N2 gas annealing (N-TNTAs 0.2% U-N2). Measurement of photocurrent density showed better activity under visible light with smaller bandgap energy. |
doi_str_mv | 10.1088/1757-899X/509/1/012144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560975098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560975098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-66d854c32f49b12813673a906ea66ce77c032db6d8090b515caf2a7d481cd0f33</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOKdfQQJevMwmbZq2RxnzD0w9TMFbSNNky6hJTNJDL352MysTQfAQ3uR9n-cN_JLkHMErBKsqRWVRzqq6fk0LWKcohShDGB8kk_3gcH-v0HFy4v0WQlJiDCfJx2rQYSO88sBI8AhaY0ULggpMKwY00yb0jQDMOTZ4YDcmmNhrBei90mvQO8EA80Cr4MxaaGCd4L3zxgEZzxcvOsHjlLPAuiEoDpi1nYpPZfRpciRZ58XZd50mLzeL5_ndbPl0ez-_Xs44xjjMCGmrAvM8k7huUFahnJQ5qyERjBAuypLDPGubSMEaNgUqOJMZK1tcId5CmefT5GLca51574UPdGt6p-OXNCsIrMsYXRUpMlLcGe-dkNQ69cbcQBGku6zpLka6i5RGgSI6Zh3FbBSVsT-b_5Uu_5AeVotfGLWtzD8B5jKRNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560975098</pqid></control><display><type>article</type><title>Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Elysabeth, Tiur ; Slamet ; Sri Redjeki, Athiek</creator><creatorcontrib>Elysabeth, Tiur ; Slamet ; Sri Redjeki, Athiek</creatorcontrib><description>Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocatalytic process. Nitrogen doped titania nanotube arrays (N-TNTAs) was synthesized by a one-step electrochemical anodization method at 50 V for 2 hour, in the electrolyte solution containing water, ammonium fluoride, glycerol and specified amounts of urea as nitrogen precursor followed by annealing at 500°C for 3 h to induce crystallization. Amount of urea (0.1, 0.2 and 0.4 wt%) in electrolyte solution and annealing atmosphere (air and N2) were varied to enhance visible light photo response. SEM analysis showed that TNTAs and N-TNTAs were successfully synthesized with diameters of 64-320 nm but the morphologies did not show a significant difference. The XRD results showed an identical pattern dominated by the anatase phase. The size of N-TNTAs crystallite is larger than the undoped TNTAs. UV-DRS analysis showed that N-TNTAs have smaller bandgap energy. The smallest bandgap energy was obtained 2.84 eV from N-TNTAs using 0.2% urea with N2 gas annealing (N-TNTAs 0.2% U-N2). Measurement of photocurrent density showed better activity under visible light with smaller bandgap energy.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/509/1/012144</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anatase ; Annealing ; Arrays ; Crystallites ; Crystallization ; Diameters ; Electrolytes ; Energy gap ; Morphology ; Nanotubes ; Nitrogen ; nitrogen doping ; nitrogen precursor ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; photoelectrocatalytic ; Precursors ; Synthesis ; Titania nanotube ; Titanium dioxide ; Ureas</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-04, Vol.509 (1), p.12144</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-66d854c32f49b12813673a906ea66ce77c032db6d8090b515caf2a7d481cd0f33</citedby><cites>FETCH-LOGICAL-c444t-66d854c32f49b12813673a906ea66ce77c032db6d8090b515caf2a7d481cd0f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/509/1/012144/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,782,786,27931,27932,38875,38897,53847,53874</link.rule.ids></links><search><creatorcontrib>Elysabeth, Tiur</creatorcontrib><creatorcontrib>Slamet</creatorcontrib><creatorcontrib>Sri Redjeki, Athiek</creatorcontrib><title>Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocatalytic process. Nitrogen doped titania nanotube arrays (N-TNTAs) was synthesized by a one-step electrochemical anodization method at 50 V for 2 hour, in the electrolyte solution containing water, ammonium fluoride, glycerol and specified amounts of urea as nitrogen precursor followed by annealing at 500°C for 3 h to induce crystallization. Amount of urea (0.1, 0.2 and 0.4 wt%) in electrolyte solution and annealing atmosphere (air and N2) were varied to enhance visible light photo response. SEM analysis showed that TNTAs and N-TNTAs were successfully synthesized with diameters of 64-320 nm but the morphologies did not show a significant difference. The XRD results showed an identical pattern dominated by the anatase phase. The size of N-TNTAs crystallite is larger than the undoped TNTAs. UV-DRS analysis showed that N-TNTAs have smaller bandgap energy. The smallest bandgap energy was obtained 2.84 eV from N-TNTAs using 0.2% urea with N2 gas annealing (N-TNTAs 0.2% U-N2). Measurement of photocurrent density showed better activity under visible light with smaller bandgap energy.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Arrays</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Diameters</subject><subject>Electrolytes</subject><subject>Energy gap</subject><subject>Morphology</subject><subject>Nanotubes</subject><subject>Nitrogen</subject><subject>nitrogen doping</subject><subject>nitrogen precursor</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrocatalytic</subject><subject>Precursors</subject><subject>Synthesis</subject><subject>Titania nanotube</subject><subject>Titanium dioxide</subject><subject>Ureas</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9LwzAYh4soOKdfQQJevMwmbZq2RxnzD0w9TMFbSNNky6hJTNJDL352MysTQfAQ3uR9n-cN_JLkHMErBKsqRWVRzqq6fk0LWKcohShDGB8kk_3gcH-v0HFy4v0WQlJiDCfJx2rQYSO88sBI8AhaY0ULggpMKwY00yb0jQDMOTZ4YDcmmNhrBei90mvQO8EA80Cr4MxaaGCd4L3zxgEZzxcvOsHjlLPAuiEoDpi1nYpPZfRpciRZ58XZd50mLzeL5_ndbPl0ez-_Xs44xjjMCGmrAvM8k7huUFahnJQ5qyERjBAuypLDPGubSMEaNgUqOJMZK1tcId5CmefT5GLca51574UPdGt6p-OXNCsIrMsYXRUpMlLcGe-dkNQ69cbcQBGku6zpLka6i5RGgSI6Zh3FbBSVsT-b_5Uu_5AeVotfGLWtzD8B5jKRNw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Elysabeth, Tiur</creator><creator>Slamet</creator><creator>Sri Redjeki, Athiek</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190401</creationdate><title>Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application</title><author>Elysabeth, Tiur ; Slamet ; Sri Redjeki, Athiek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-66d854c32f49b12813673a906ea66ce77c032db6d8090b515caf2a7d481cd0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Arrays</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Diameters</topic><topic>Electrolytes</topic><topic>Energy gap</topic><topic>Morphology</topic><topic>Nanotubes</topic><topic>Nitrogen</topic><topic>nitrogen doping</topic><topic>nitrogen precursor</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrocatalytic</topic><topic>Precursors</topic><topic>Synthesis</topic><topic>Titania nanotube</topic><topic>Titanium dioxide</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elysabeth, Tiur</creatorcontrib><creatorcontrib>Slamet</creatorcontrib><creatorcontrib>Sri Redjeki, Athiek</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elysabeth, Tiur</au><au>Slamet</au><au>Sri Redjeki, Athiek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>509</volume><issue>1</issue><spage>12144</spage><pages>12144-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocatalytic process. Nitrogen doped titania nanotube arrays (N-TNTAs) was synthesized by a one-step electrochemical anodization method at 50 V for 2 hour, in the electrolyte solution containing water, ammonium fluoride, glycerol and specified amounts of urea as nitrogen precursor followed by annealing at 500°C for 3 h to induce crystallization. Amount of urea (0.1, 0.2 and 0.4 wt%) in electrolyte solution and annealing atmosphere (air and N2) were varied to enhance visible light photo response. SEM analysis showed that TNTAs and N-TNTAs were successfully synthesized with diameters of 64-320 nm but the morphologies did not show a significant difference. The XRD results showed an identical pattern dominated by the anatase phase. The size of N-TNTAs crystallite is larger than the undoped TNTAs. UV-DRS analysis showed that N-TNTAs have smaller bandgap energy. The smallest bandgap energy was obtained 2.84 eV from N-TNTAs using 0.2% urea with N2 gas annealing (N-TNTAs 0.2% U-N2). Measurement of photocurrent density showed better activity under visible light with smaller bandgap energy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/509/1/012144</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2019-04, Vol.509 (1), p.12144 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2560975098 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Anatase Annealing Arrays Crystallites Crystallization Diameters Electrolytes Energy gap Morphology Nanotubes Nitrogen nitrogen doping nitrogen precursor Photoanodes Photoelectric effect Photoelectric emission photoelectrocatalytic Precursors Synthesis Titania nanotube Titanium dioxide Ureas |
title | Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20N%20doped%20titania%20nanotube%20arrays%20photoanode%20using%20urea%20as%20nitrogen%20precursor%20for%20photoelectrocatalytic%20application&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Elysabeth,%20Tiur&rft.date=2019-04-01&rft.volume=509&rft.issue=1&rft.spage=12144&rft.pages=12144-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/509/1/012144&rft_dat=%3Cproquest_cross%3E2560975098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560975098&rft_id=info:pmid/&rfr_iscdi=true |