Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application

Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocataly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2019-04, Vol.509 (1), p.12144
Hauptverfasser: Elysabeth, Tiur, Slamet, Sri Redjeki, Athiek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12144
container_title IOP conference series. Materials Science and Engineering
container_volume 509
creator Elysabeth, Tiur
Slamet
Sri Redjeki, Athiek
description Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocatalytic process. Nitrogen doped titania nanotube arrays (N-TNTAs) was synthesized by a one-step electrochemical anodization method at 50 V for 2 hour, in the electrolyte solution containing water, ammonium fluoride, glycerol and specified amounts of urea as nitrogen precursor followed by annealing at 500°C for 3 h to induce crystallization. Amount of urea (0.1, 0.2 and 0.4 wt%) in electrolyte solution and annealing atmosphere (air and N2) were varied to enhance visible light photo response. SEM analysis showed that TNTAs and N-TNTAs were successfully synthesized with diameters of 64-320 nm but the morphologies did not show a significant difference. The XRD results showed an identical pattern dominated by the anatase phase. The size of N-TNTAs crystallite is larger than the undoped TNTAs. UV-DRS analysis showed that N-TNTAs have smaller bandgap energy. The smallest bandgap energy was obtained 2.84 eV from N-TNTAs using 0.2% urea with N2 gas annealing (N-TNTAs 0.2% U-N2). Measurement of photocurrent density showed better activity under visible light with smaller bandgap energy.
doi_str_mv 10.1088/1757-899X/509/1/012144
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560975098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560975098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-66d854c32f49b12813673a906ea66ce77c032db6d8090b515caf2a7d481cd0f33</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOKdfQQJevMwmbZq2RxnzD0w9TMFbSNNky6hJTNJDL352MysTQfAQ3uR9n-cN_JLkHMErBKsqRWVRzqq6fk0LWKcohShDGB8kk_3gcH-v0HFy4v0WQlJiDCfJx2rQYSO88sBI8AhaY0ULggpMKwY00yb0jQDMOTZ4YDcmmNhrBei90mvQO8EA80Cr4MxaaGCd4L3zxgEZzxcvOsHjlLPAuiEoDpi1nYpPZfRpciRZ58XZd50mLzeL5_ndbPl0ez-_Xs44xjjMCGmrAvM8k7huUFahnJQ5qyERjBAuypLDPGubSMEaNgUqOJMZK1tcId5CmefT5GLca51574UPdGt6p-OXNCsIrMsYXRUpMlLcGe-dkNQ69cbcQBGku6zpLka6i5RGgSI6Zh3FbBSVsT-b_5Uu_5AeVotfGLWtzD8B5jKRNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560975098</pqid></control><display><type>article</type><title>Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Elysabeth, Tiur ; Slamet ; Sri Redjeki, Athiek</creator><creatorcontrib>Elysabeth, Tiur ; Slamet ; Sri Redjeki, Athiek</creatorcontrib><description>Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocatalytic process. Nitrogen doped titania nanotube arrays (N-TNTAs) was synthesized by a one-step electrochemical anodization method at 50 V for 2 hour, in the electrolyte solution containing water, ammonium fluoride, glycerol and specified amounts of urea as nitrogen precursor followed by annealing at 500°C for 3 h to induce crystallization. Amount of urea (0.1, 0.2 and 0.4 wt%) in electrolyte solution and annealing atmosphere (air and N2) were varied to enhance visible light photo response. SEM analysis showed that TNTAs and N-TNTAs were successfully synthesized with diameters of 64-320 nm but the morphologies did not show a significant difference. The XRD results showed an identical pattern dominated by the anatase phase. The size of N-TNTAs crystallite is larger than the undoped TNTAs. UV-DRS analysis showed that N-TNTAs have smaller bandgap energy. The smallest bandgap energy was obtained 2.84 eV from N-TNTAs using 0.2% urea with N2 gas annealing (N-TNTAs 0.2% U-N2). Measurement of photocurrent density showed better activity under visible light with smaller bandgap energy.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/509/1/012144</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anatase ; Annealing ; Arrays ; Crystallites ; Crystallization ; Diameters ; Electrolytes ; Energy gap ; Morphology ; Nanotubes ; Nitrogen ; nitrogen doping ; nitrogen precursor ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; photoelectrocatalytic ; Precursors ; Synthesis ; Titania nanotube ; Titanium dioxide ; Ureas</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-04, Vol.509 (1), p.12144</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-66d854c32f49b12813673a906ea66ce77c032db6d8090b515caf2a7d481cd0f33</citedby><cites>FETCH-LOGICAL-c444t-66d854c32f49b12813673a906ea66ce77c032db6d8090b515caf2a7d481cd0f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/509/1/012144/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,782,786,27931,27932,38875,38897,53847,53874</link.rule.ids></links><search><creatorcontrib>Elysabeth, Tiur</creatorcontrib><creatorcontrib>Slamet</creatorcontrib><creatorcontrib>Sri Redjeki, Athiek</creatorcontrib><title>Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocatalytic process. Nitrogen doped titania nanotube arrays (N-TNTAs) was synthesized by a one-step electrochemical anodization method at 50 V for 2 hour, in the electrolyte solution containing water, ammonium fluoride, glycerol and specified amounts of urea as nitrogen precursor followed by annealing at 500°C for 3 h to induce crystallization. Amount of urea (0.1, 0.2 and 0.4 wt%) in electrolyte solution and annealing atmosphere (air and N2) were varied to enhance visible light photo response. SEM analysis showed that TNTAs and N-TNTAs were successfully synthesized with diameters of 64-320 nm but the morphologies did not show a significant difference. The XRD results showed an identical pattern dominated by the anatase phase. The size of N-TNTAs crystallite is larger than the undoped TNTAs. UV-DRS analysis showed that N-TNTAs have smaller bandgap energy. The smallest bandgap energy was obtained 2.84 eV from N-TNTAs using 0.2% urea with N2 gas annealing (N-TNTAs 0.2% U-N2). Measurement of photocurrent density showed better activity under visible light with smaller bandgap energy.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Arrays</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Diameters</subject><subject>Electrolytes</subject><subject>Energy gap</subject><subject>Morphology</subject><subject>Nanotubes</subject><subject>Nitrogen</subject><subject>nitrogen doping</subject><subject>nitrogen precursor</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photoelectrocatalytic</subject><subject>Precursors</subject><subject>Synthesis</subject><subject>Titania nanotube</subject><subject>Titanium dioxide</subject><subject>Ureas</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9LwzAYh4soOKdfQQJevMwmbZq2RxnzD0w9TMFbSNNky6hJTNJDL352MysTQfAQ3uR9n-cN_JLkHMErBKsqRWVRzqq6fk0LWKcohShDGB8kk_3gcH-v0HFy4v0WQlJiDCfJx2rQYSO88sBI8AhaY0ULggpMKwY00yb0jQDMOTZ4YDcmmNhrBei90mvQO8EA80Cr4MxaaGCd4L3zxgEZzxcvOsHjlLPAuiEoDpi1nYpPZfRpciRZ58XZd50mLzeL5_ndbPl0ez-_Xs44xjjMCGmrAvM8k7huUFahnJQ5qyERjBAuypLDPGubSMEaNgUqOJMZK1tcId5CmefT5GLca51574UPdGt6p-OXNCsIrMsYXRUpMlLcGe-dkNQ69cbcQBGku6zpLka6i5RGgSI6Zh3FbBSVsT-b_5Uu_5AeVotfGLWtzD8B5jKRNw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Elysabeth, Tiur</creator><creator>Slamet</creator><creator>Sri Redjeki, Athiek</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190401</creationdate><title>Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application</title><author>Elysabeth, Tiur ; Slamet ; Sri Redjeki, Athiek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-66d854c32f49b12813673a906ea66ce77c032db6d8090b515caf2a7d481cd0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Arrays</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Diameters</topic><topic>Electrolytes</topic><topic>Energy gap</topic><topic>Morphology</topic><topic>Nanotubes</topic><topic>Nitrogen</topic><topic>nitrogen doping</topic><topic>nitrogen precursor</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photoelectrocatalytic</topic><topic>Precursors</topic><topic>Synthesis</topic><topic>Titania nanotube</topic><topic>Titanium dioxide</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elysabeth, Tiur</creatorcontrib><creatorcontrib>Slamet</creatorcontrib><creatorcontrib>Sri Redjeki, Athiek</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elysabeth, Tiur</au><au>Slamet</au><au>Sri Redjeki, Athiek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>509</volume><issue>1</issue><spage>12144</spage><pages>12144-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Addition of urea as nitrogen precursor during synthesis of TiO2 nanotube arrays photocatalyst has been investigated. This study aimed to increase the visible light photo response of TiO2 by applying nitrogen doped titania nanotube arrays (N-TNTAs) for photoanode preparation in the photoelectrocatalytic process. Nitrogen doped titania nanotube arrays (N-TNTAs) was synthesized by a one-step electrochemical anodization method at 50 V for 2 hour, in the electrolyte solution containing water, ammonium fluoride, glycerol and specified amounts of urea as nitrogen precursor followed by annealing at 500°C for 3 h to induce crystallization. Amount of urea (0.1, 0.2 and 0.4 wt%) in electrolyte solution and annealing atmosphere (air and N2) were varied to enhance visible light photo response. SEM analysis showed that TNTAs and N-TNTAs were successfully synthesized with diameters of 64-320 nm but the morphologies did not show a significant difference. The XRD results showed an identical pattern dominated by the anatase phase. The size of N-TNTAs crystallite is larger than the undoped TNTAs. UV-DRS analysis showed that N-TNTAs have smaller bandgap energy. The smallest bandgap energy was obtained 2.84 eV from N-TNTAs using 0.2% urea with N2 gas annealing (N-TNTAs 0.2% U-N2). Measurement of photocurrent density showed better activity under visible light with smaller bandgap energy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/509/1/012144</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2019-04, Vol.509 (1), p.12144
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2560975098
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Anatase
Annealing
Arrays
Crystallites
Crystallization
Diameters
Electrolytes
Energy gap
Morphology
Nanotubes
Nitrogen
nitrogen doping
nitrogen precursor
Photoanodes
Photoelectric effect
Photoelectric emission
photoelectrocatalytic
Precursors
Synthesis
Titania nanotube
Titanium dioxide
Ureas
title Synthesis of N doped titania nanotube arrays photoanode using urea as nitrogen precursor for photoelectrocatalytic application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20N%20doped%20titania%20nanotube%20arrays%20photoanode%20using%20urea%20as%20nitrogen%20precursor%20for%20photoelectrocatalytic%20application&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Elysabeth,%20Tiur&rft.date=2019-04-01&rft.volume=509&rft.issue=1&rft.spage=12144&rft.pages=12144-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/509/1/012144&rft_dat=%3Cproquest_cross%3E2560975098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560975098&rft_id=info:pmid/&rfr_iscdi=true