Optimal Investment and Reinsurance Under the Gamma Process

In this paper, the insurance company invests its wealth in a capital market composed of a riskless asset and a risky asset. The aggregate claim process of the insurance company is modeled by the Gamma process so as to make it closer to the reality. In practice, the insurance company provides not onl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2021-09, Vol.23 (3), p.893-923
Hauptverfasser: Li, Bohan, Guo, Junyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue 3
container_start_page 893
container_title Methodology and computing in applied probability
container_volume 23
creator Li, Bohan
Guo, Junyi
description In this paper, the insurance company invests its wealth in a capital market composed of a riskless asset and a risky asset. The aggregate claim process of the insurance company is modeled by the Gamma process so as to make it closer to the reality. In practice, the insurance company provides not only those policies with large lose coverings but also policies with small ones. The Gamma process can describe this characteristic better than the compound Poisson process. It is assumed that the insurance company can purchase proportional reinsurance or excess-of-loss reinsurance. Two kinds of optimization problems are considered: maximizing the expected utility of the terminal wealth and minimizing the probability of ruin. For the problem of maximizing the expected utility of the terminal wealth, the explicit optimal value functions and optimal strategies are obtained. For the problem of minimizing the ruin probability, a sufficient condition for the optimal value function and the optimal strategy is obtained.
doi_str_mv 10.1007/s11009-020-09795-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560961991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560961991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3164db31a8d38074f5c5684b14cbffa250ec501d9086a92801e4a61a1bcc09d93</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwA5wscTbsxnEcc0MVlEqVihA9W47jQKvGKXZCxd9jCBI3TrOHmdndR8glwjUCyJuISRSDDBgoqQQ7HJEJCsmZlMiP08xLyUSZ4yk5i3ELkKHg-YTcrvb9pjU7uvAfLvat8z01vqbPbuPjEIy3jq597QLt3xydm7Y19Cl01sV4Tk4as4vu4lenZP1w_zJ7ZMvVfDG7WzKbSegZxyKvK46mrHkJMm-EFUWZV5jbqmlMJsBZAVgrKAujshLQ5aZAg5W1oGrFp-Rq7N2H7n1IR-ptNwSfVupMFKAKVAqTKxtdNnQxBtfofUiPhU-NoL8Z6ZGRToz0DyN9SCE-hmIy-1cX_qr_SX0BumJo_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560961991</pqid></control><display><type>article</type><title>Optimal Investment and Reinsurance Under the Gamma Process</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Li, Bohan ; Guo, Junyi</creator><creatorcontrib>Li, Bohan ; Guo, Junyi</creatorcontrib><description>In this paper, the insurance company invests its wealth in a capital market composed of a riskless asset and a risky asset. The aggregate claim process of the insurance company is modeled by the Gamma process so as to make it closer to the reality. In practice, the insurance company provides not only those policies with large lose coverings but also policies with small ones. The Gamma process can describe this characteristic better than the compound Poisson process. It is assumed that the insurance company can purchase proportional reinsurance or excess-of-loss reinsurance. Two kinds of optimization problems are considered: maximizing the expected utility of the terminal wealth and minimizing the probability of ruin. For the problem of maximizing the expected utility of the terminal wealth, the explicit optimal value functions and optimal strategies are obtained. For the problem of minimizing the ruin probability, a sufficient condition for the optimal value function and the optimal strategy is obtained.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-020-09795-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Economics ; Electrical Engineering ; Expected utility ; Insurance ; Insurance companies ; Life Sciences ; Mathematics and Statistics ; Maximization ; Optimization ; Policies ; Reinsurance ; Statistical analysis ; Statistics</subject><ispartof>Methodology and computing in applied probability, 2021-09, Vol.23 (3), p.893-923</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3164db31a8d38074f5c5684b14cbffa250ec501d9086a92801e4a61a1bcc09d93</cites><orcidid>0000-0001-6195-1828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11009-020-09795-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11009-020-09795-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Bohan</creatorcontrib><creatorcontrib>Guo, Junyi</creatorcontrib><title>Optimal Investment and Reinsurance Under the Gamma Process</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>In this paper, the insurance company invests its wealth in a capital market composed of a riskless asset and a risky asset. The aggregate claim process of the insurance company is modeled by the Gamma process so as to make it closer to the reality. In practice, the insurance company provides not only those policies with large lose coverings but also policies with small ones. The Gamma process can describe this characteristic better than the compound Poisson process. It is assumed that the insurance company can purchase proportional reinsurance or excess-of-loss reinsurance. Two kinds of optimization problems are considered: maximizing the expected utility of the terminal wealth and minimizing the probability of ruin. For the problem of maximizing the expected utility of the terminal wealth, the explicit optimal value functions and optimal strategies are obtained. For the problem of minimizing the ruin probability, a sufficient condition for the optimal value function and the optimal strategy is obtained.</description><subject>Business and Management</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Expected utility</subject><subject>Insurance</subject><subject>Insurance companies</subject><subject>Life Sciences</subject><subject>Mathematics and Statistics</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Policies</subject><subject>Reinsurance</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFOwzAQRC0EEqXwA5wscTbsxnEcc0MVlEqVihA9W47jQKvGKXZCxd9jCBI3TrOHmdndR8glwjUCyJuISRSDDBgoqQQ7HJEJCsmZlMiP08xLyUSZ4yk5i3ELkKHg-YTcrvb9pjU7uvAfLvat8z01vqbPbuPjEIy3jq597QLt3xydm7Y19Cl01sV4Tk4as4vu4lenZP1w_zJ7ZMvVfDG7WzKbSegZxyKvK46mrHkJMm-EFUWZV5jbqmlMJsBZAVgrKAujshLQ5aZAg5W1oGrFp-Rq7N2H7n1IR-ptNwSfVupMFKAKVAqTKxtdNnQxBtfofUiPhU-NoL8Z6ZGRToz0DyN9SCE-hmIy-1cX_qr_SX0BumJo_g</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Li, Bohan</creator><creator>Guo, Junyi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6195-1828</orcidid></search><sort><creationdate>20210901</creationdate><title>Optimal Investment and Reinsurance Under the Gamma Process</title><author>Li, Bohan ; Guo, Junyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3164db31a8d38074f5c5684b14cbffa250ec501d9086a92801e4a61a1bcc09d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Business and Management</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Expected utility</topic><topic>Insurance</topic><topic>Insurance companies</topic><topic>Life Sciences</topic><topic>Mathematics and Statistics</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Policies</topic><topic>Reinsurance</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bohan</creatorcontrib><creatorcontrib>Guo, Junyi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bohan</au><au>Guo, Junyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Investment and Reinsurance Under the Gamma Process</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>23</volume><issue>3</issue><spage>893</spage><epage>923</epage><pages>893-923</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>In this paper, the insurance company invests its wealth in a capital market composed of a riskless asset and a risky asset. The aggregate claim process of the insurance company is modeled by the Gamma process so as to make it closer to the reality. In practice, the insurance company provides not only those policies with large lose coverings but also policies with small ones. The Gamma process can describe this characteristic better than the compound Poisson process. It is assumed that the insurance company can purchase proportional reinsurance or excess-of-loss reinsurance. Two kinds of optimization problems are considered: maximizing the expected utility of the terminal wealth and minimizing the probability of ruin. For the problem of maximizing the expected utility of the terminal wealth, the explicit optimal value functions and optimal strategies are obtained. For the problem of minimizing the ruin probability, a sufficient condition for the optimal value function and the optimal strategy is obtained.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11009-020-09795-w</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-6195-1828</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-5841
ispartof Methodology and computing in applied probability, 2021-09, Vol.23 (3), p.893-923
issn 1387-5841
1573-7713
language eng
recordid cdi_proquest_journals_2560961991
source Springer Nature - Complete Springer Journals; Business Source Complete
subjects Business and Management
Economics
Electrical Engineering
Expected utility
Insurance
Insurance companies
Life Sciences
Mathematics and Statistics
Maximization
Optimization
Policies
Reinsurance
Statistical analysis
Statistics
title Optimal Investment and Reinsurance Under the Gamma Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Investment%20and%20Reinsurance%20Under%20the%20Gamma%20Process&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Li,%20Bohan&rft.date=2021-09-01&rft.volume=23&rft.issue=3&rft.spage=893&rft.epage=923&rft.pages=893-923&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-020-09795-w&rft_dat=%3Cproquest_cross%3E2560961991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560961991&rft_id=info:pmid/&rfr_iscdi=true