Fatigue Cyclic Testing of the ITER CS Inlets

ITER Central Solenoid (CS) is cooled by injecting supercritical helium at the inner diameter (ID), an area with the highest stress. The jacket near the helium inlet is the weakest structural element of the ITER CS due to the high stress concentration. To verify adequate mechanical performance of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2019-04, Vol.502 (1), p.12189
Hauptverfasser: Martovetsky, Nicolai, Walsh, Robert, Freudenberg, Kevin, Reiersen, Wayne, Everitt, David, McRae, Dustin, Myatt, Leonard, Cochran, Kristine, Jong, Cornelis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12189
container_title IOP conference series. Materials Science and Engineering
container_volume 502
creator Martovetsky, Nicolai
Walsh, Robert
Freudenberg, Kevin
Reiersen, Wayne
Everitt, David
McRae, Dustin
Myatt, Leonard
Cochran, Kristine
Jong, Cornelis
description ITER Central Solenoid (CS) is cooled by injecting supercritical helium at the inner diameter (ID), an area with the highest stress. The jacket near the helium inlet is the weakest structural element of the ITER CS due to the high stress concentration. To verify adequate mechanical performance of the inlets, we made six full-scale specimens and subjected them to relevant cycling loading in liquid nitrogen to assess the operational margin of the inlets. To increase fatigue life of the inlets, we used a treatment called ultrasonic peening (UP). This treatment allows for the creation of a compressive residual stress at the surface of the jacket with the highest stress, which significantly delays initiation of the fatigue crack. For comparison purposes, one of the samples was intentionally not UP treated. Test results showed significant advantages of the UP treatment and demonstrated sufficient life to support the ITER CS mission.
doi_str_mv 10.1088/1757-899X/502/1/012189
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2560950831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560950831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-d014b24677d5a47d8b27ccfb855d5769c38542a6467934152107111aec37ef373</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFb_ggS9eDBmZ79zlNBqoSLYCt6WdLNpU2o2ZtND_70bIoogeJqBed7h5UHoEvAdYKUSkFzGKk3fEo5JAgkGAio9QqPvw_H3ruAUnXm_xVhIxvAI3U7zrlrvbZQdzK4y0dL6rqrXkSujbmOj2XLyEmWLaFbvbOfP0UmZ77y9-Jpj9DqdLLPHeP78MMvu57FhlHVxgYGtCBNSFjxnslArIo0pV4rzgkuRGqo4I7kIREoZcAJYAkBuDZW2pJKO0dXw14Uy2puqs2ZjXF1b02kQLBUMAnQ9QE3rPvahtt66fVuHXppwgVOOFe0pMVCmdd63ttRNW73n7UED1r0-3ZvRvSUd9GnQg74QJEOwcs3P539DN3-EnhaTX5huipJ-AjVleoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560950831</pqid></control><display><type>article</type><title>Fatigue Cyclic Testing of the ITER CS Inlets</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Martovetsky, Nicolai ; Walsh, Robert ; Freudenberg, Kevin ; Reiersen, Wayne ; Everitt, David ; McRae, Dustin ; Myatt, Leonard ; Cochran, Kristine ; Jong, Cornelis</creator><creatorcontrib>Martovetsky, Nicolai ; Walsh, Robert ; Freudenberg, Kevin ; Reiersen, Wayne ; Everitt, David ; McRae, Dustin ; Myatt, Leonard ; Cochran, Kristine ; Jong, Cornelis ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>ITER Central Solenoid (CS) is cooled by injecting supercritical helium at the inner diameter (ID), an area with the highest stress. The jacket near the helium inlet is the weakest structural element of the ITER CS due to the high stress concentration. To verify adequate mechanical performance of the inlets, we made six full-scale specimens and subjected them to relevant cycling loading in liquid nitrogen to assess the operational margin of the inlets. To increase fatigue life of the inlets, we used a treatment called ultrasonic peening (UP). This treatment allows for the creation of a compressive residual stress at the surface of the jacket with the highest stress, which significantly delays initiation of the fatigue crack. For comparison purposes, one of the samples was intentionally not UP treated. Test results showed significant advantages of the UP treatment and demonstrated sufficient life to support the ITER CS mission.</description><identifier>ISSN: 1757-8981</identifier><identifier>ISSN: 1757-899X</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/502/1/012189</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Compressive properties ; Crack initiation ; Crack propagation ; Fatigue failure ; Fatigue life ; Fatigue tests ; Helium ; Inlets ; Liquid nitrogen ; Mechanical properties ; Residual stress ; Solenoids ; Stress concentration ; Structural members</subject><ispartof>IOP conference series. Materials Science and Engineering, 2019-04, Vol.502 (1), p.12189</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-d014b24677d5a47d8b27ccfb855d5769c38542a6467934152107111aec37ef373</citedby><cites>FETCH-LOGICAL-c434t-d014b24677d5a47d8b27ccfb855d5769c38542a6467934152107111aec37ef373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/502/1/012189/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,309,314,776,780,785,881,23910,27903,27904,38847,38869,53819,53846</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1649641$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Martovetsky, Nicolai</creatorcontrib><creatorcontrib>Walsh, Robert</creatorcontrib><creatorcontrib>Freudenberg, Kevin</creatorcontrib><creatorcontrib>Reiersen, Wayne</creatorcontrib><creatorcontrib>Everitt, David</creatorcontrib><creatorcontrib>McRae, Dustin</creatorcontrib><creatorcontrib>Myatt, Leonard</creatorcontrib><creatorcontrib>Cochran, Kristine</creatorcontrib><creatorcontrib>Jong, Cornelis</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Fatigue Cyclic Testing of the ITER CS Inlets</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>ITER Central Solenoid (CS) is cooled by injecting supercritical helium at the inner diameter (ID), an area with the highest stress. The jacket near the helium inlet is the weakest structural element of the ITER CS due to the high stress concentration. To verify adequate mechanical performance of the inlets, we made six full-scale specimens and subjected them to relevant cycling loading in liquid nitrogen to assess the operational margin of the inlets. To increase fatigue life of the inlets, we used a treatment called ultrasonic peening (UP). This treatment allows for the creation of a compressive residual stress at the surface of the jacket with the highest stress, which significantly delays initiation of the fatigue crack. For comparison purposes, one of the samples was intentionally not UP treated. Test results showed significant advantages of the UP treatment and demonstrated sufficient life to support the ITER CS mission.</description><subject>Compressive properties</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Helium</subject><subject>Inlets</subject><subject>Liquid nitrogen</subject><subject>Mechanical properties</subject><subject>Residual stress</subject><subject>Solenoids</subject><subject>Stress concentration</subject><subject>Structural members</subject><issn>1757-8981</issn><issn>1757-899X</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1Lw0AQhhdRsFb_ggS9eDBmZ79zlNBqoSLYCt6WdLNpU2o2ZtND_70bIoogeJqBed7h5UHoEvAdYKUSkFzGKk3fEo5JAgkGAio9QqPvw_H3ruAUnXm_xVhIxvAI3U7zrlrvbZQdzK4y0dL6rqrXkSujbmOj2XLyEmWLaFbvbOfP0UmZ77y9-Jpj9DqdLLPHeP78MMvu57FhlHVxgYGtCBNSFjxnslArIo0pV4rzgkuRGqo4I7kIREoZcAJYAkBuDZW2pJKO0dXw14Uy2puqs2ZjXF1b02kQLBUMAnQ9QE3rPvahtt66fVuHXppwgVOOFe0pMVCmdd63ttRNW73n7UED1r0-3ZvRvSUd9GnQg74QJEOwcs3P539DN3-EnhaTX5huipJ-AjVleoA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Martovetsky, Nicolai</creator><creator>Walsh, Robert</creator><creator>Freudenberg, Kevin</creator><creator>Reiersen, Wayne</creator><creator>Everitt, David</creator><creator>McRae, Dustin</creator><creator>Myatt, Leonard</creator><creator>Cochran, Kristine</creator><creator>Jong, Cornelis</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190401</creationdate><title>Fatigue Cyclic Testing of the ITER CS Inlets</title><author>Martovetsky, Nicolai ; Walsh, Robert ; Freudenberg, Kevin ; Reiersen, Wayne ; Everitt, David ; McRae, Dustin ; Myatt, Leonard ; Cochran, Kristine ; Jong, Cornelis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-d014b24677d5a47d8b27ccfb855d5769c38542a6467934152107111aec37ef373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compressive properties</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Helium</topic><topic>Inlets</topic><topic>Liquid nitrogen</topic><topic>Mechanical properties</topic><topic>Residual stress</topic><topic>Solenoids</topic><topic>Stress concentration</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martovetsky, Nicolai</creatorcontrib><creatorcontrib>Walsh, Robert</creatorcontrib><creatorcontrib>Freudenberg, Kevin</creatorcontrib><creatorcontrib>Reiersen, Wayne</creatorcontrib><creatorcontrib>Everitt, David</creatorcontrib><creatorcontrib>McRae, Dustin</creatorcontrib><creatorcontrib>Myatt, Leonard</creatorcontrib><creatorcontrib>Cochran, Kristine</creatorcontrib><creatorcontrib>Jong, Cornelis</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martovetsky, Nicolai</au><au>Walsh, Robert</au><au>Freudenberg, Kevin</au><au>Reiersen, Wayne</au><au>Everitt, David</au><au>McRae, Dustin</au><au>Myatt, Leonard</au><au>Cochran, Kristine</au><au>Jong, Cornelis</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Cyclic Testing of the ITER CS Inlets</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>502</volume><issue>1</issue><spage>12189</spage><pages>12189-</pages><issn>1757-8981</issn><issn>1757-899X</issn><eissn>1757-899X</eissn><abstract>ITER Central Solenoid (CS) is cooled by injecting supercritical helium at the inner diameter (ID), an area with the highest stress. The jacket near the helium inlet is the weakest structural element of the ITER CS due to the high stress concentration. To verify adequate mechanical performance of the inlets, we made six full-scale specimens and subjected them to relevant cycling loading in liquid nitrogen to assess the operational margin of the inlets. To increase fatigue life of the inlets, we used a treatment called ultrasonic peening (UP). This treatment allows for the creation of a compressive residual stress at the surface of the jacket with the highest stress, which significantly delays initiation of the fatigue crack. For comparison purposes, one of the samples was intentionally not UP treated. Test results showed significant advantages of the UP treatment and demonstrated sufficient life to support the ITER CS mission.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/502/1/012189</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2019-04, Vol.502 (1), p.12189
issn 1757-8981
1757-899X
1757-899X
language eng
recordid cdi_proquest_journals_2560950831
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Compressive properties
Crack initiation
Crack propagation
Fatigue failure
Fatigue life
Fatigue tests
Helium
Inlets
Liquid nitrogen
Mechanical properties
Residual stress
Solenoids
Stress concentration
Structural members
title Fatigue Cyclic Testing of the ITER CS Inlets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Cyclic%20Testing%20of%20the%20ITER%20CS%20Inlets&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Martovetsky,%20Nicolai&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-04-01&rft.volume=502&rft.issue=1&rft.spage=12189&rft.pages=12189-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/502/1/012189&rft_dat=%3Cproquest_osti_%3E2560950831%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560950831&rft_id=info:pmid/&rfr_iscdi=true